

This Power Point Presentation was created by:

Joseph David Clement Fournier B.Sc.E.E., M.Sc.E.E. President and Senior Engineer of AscenTrust, LLC. Website: <u>http://ascenttrust.com</u>

- A phasor measurement unit (PMU) is a device used to estimate the magnitude and phase angle of an electrical phasor quantity (such as voltage or current) in the electricity grid using a common time source for synchronization.
- Time synchronization is usually provided by GPS or IEEE 1588 Precision Time Protocol, which allows synchronized real-time measurements of multiple remote points on the grid.
- PMUs are capable of capturing samples from a waveform in quick succession and reconstructing the phasor quantity, made up of an angle measurement and a magnitude measurement. The resulting measurement is known as a synchrophasor

Phasor Measurements WHAT IS A VOLTAGE PHASOR ?

- A Phasor is a rotating vector
- Voltage Phasor is defined by magnitude V₁ and angle S₁
- Angle is measured with respect to universal time (T=0 top of a second)
- Phasor rotates counter clockwise, similar to rotating magnetic field in a synchronous generator

ASCENTRUST

A Synchrophasor is a Phasor referenced to 60 Hz with angle referenced to universal time (T=0 top of second)

POWER FLOW FUNCTION OF PHASE ANGLE DIFFERENCE

- Power flows from high to low voltage in DC systems.
- Power flows from high voltage angle to low voltage angle in AC systems.
 - Power flow equation:
 - $P = V_1 V_2 \sin(\theta \phi)/Z$, where θ is greater than ϕ
- Synchrophasor angles are correlated to universal time (UTC) and 60 Hz
 - Allows comparison over wide area
 - The voltage angle difference between two substations correlates with the power being transferred across the grid between them
- The current angle paired with voltage angle describes real and reactive power on any line

PHASOR TECHNOLOGY INFRASTRUCTURE

- 1. Measurement (CT, PT)
- 2. Conversion to Phasor quantities - PMU
- 3. Data Aggregation and Time Alignment
- 4. Data Transport
- 5. Wide Area Visualization

Phasor Measurements:System Monitoring

- GPS-synchronized Phasor Measurement Units and communication technologies enable advancements in system monitoring
- This presentation reviews traditional and modern technologies and provides a starting point to the Synchronization Project Proposed for the ERCOT controlled portion of the Grid in Texas

Phasor Measurement systems are made up of the following systems or components

- Control center and SCADA system
- State estimation with SCADA measurements
- Phasor Measurement Units (PMUs)
- State Estimation with PMU Measurements
- GPS Timing Control

Phasor Measurements:Control Center

- Computer programs, hardware, and communication infrastructure used to monitor, control, and operate the power grid
- Functions
 - State estimation
 - Economic dispatch
 - Optimal power flow
 - Unit commitment
 - ✤ Load forecasting
 - ✤ Security assessment

Phasor Measurements:System Layout

Phasor Measurements:SCADA SYSTEM

- Supervisory control and data acquisition system
- Transmits data from the field to a central location and vice versa
- Data collected every one to a few seconds
- Data typically include
 - Breaker and switch status
 - MW flow measurements
 - MVAR flow measurements
 - Voltage magnitude measurements
 - Current magnitude measurements

Phasor Measurements:SCADA SYSTEM

Phasor Measurements:State Estimation

- Given measurements, compute an estimate of the system state
- System state typically considered to include the voltages at all buses
 - If the network topology is known, then all other electrical quantities can be computed (currents, power flows)
- Crucial in all other control center functions

Copyright © 2019

Phasor Measurements:System State Model

Power grid with N buses

Complex voltage at bus n

$$\mathcal{V}_n = V_n e^{j\theta_n} = V_{n,r} + jV_{n,i}$$

Phasor Measurements:System State Model

 $\overline{}$

$$\mathbf{x} = \begin{bmatrix} V_1, & \theta_1, \\ V_2, & \theta_2, & \dots, & V_N, & \theta_N \end{bmatrix}$$

or
$$\mathbf{x} = \begin{bmatrix} V_{1,r}, & V_{1,i}, & V_{2,r}, & V_{2,i}, & \dots, & V_{N,r}, & V_{N,i} \end{bmatrix}$$

Set to zero to avoid phase ambiguity

Number of unknown states

K = 2N - 1

Phasor Measurements:System State Measurements

M measurements from sensors

- 1. Flows: MW and MVAR flows on transmission lines or transformers
- 2. Injections: MW and MVAR injections at system buses
- 3. Voltage magnitudes at system buses
- 4. Current magnitudes

Phasor Measurements:Measurement Model

Measurement vector

Vector function: Nonlinear map from states to measurements

 $z = h(x) + \epsilon$

Measurement noise

- State estimation: Given measurement vector, find system state
- Overdetermined system: More measurements than unknowns (M > K)
- In addition, measurements are perturbed by noise

Copyright © 2019

Phasor Measurements:Noise Model

- ✤ Zero mean
 - It is possible that a sensor introduces gross errors (outliers or bad data) due to e.g., equipment failure
 - Specialized techniques can deal with this situation
- ♦ Standard deviation of measurement of sensor $i: \sigma_i$
 - Determined by accuracy of meter used

Phasor Measurements:Phasor Measurement Unit

- Phasor measurement unit (PMU) features
- PMUs can measure the voltage phasor at the bus and current phasor at the lines
- Collect measurements between 10 and 60 times per second for 60 Hz systems and between 10 to 50 times per second for 50 Hz systems (IEEE C37.118 Standard)
- Equipped with GPS receivers that provide a very accurate clock signal
- GPS time information is used to timestamp the PMU measurements

Phasor Measurements:Phasor Data Concentrator

- Phasor Data Concentrators (PDCs) collect measurements from multiple PMUs
- Buffer input streams to account for differences between times of delivery from different PMUs
- Align data according to their time-stamp
- Provide the data to other PDCs or the control center

Phasor Measurements: PMU/PDC Networks

Local PDC

- Hardware based device
- Physically close at the PMU (e.g., at the substation)
- Corporate PDC
- Collects data from multiple PMUs and PDCs at high speeds

Super PDC

- Operates at regional scale
- Organizes dataset and makes it available for control center functions

Phasor Measurements:PMUs in North America

Phasor Measurements: PMU VS. SCADA PMU VS. SCADA

	SCADA	PMU
Measurements	Power flows and injections, voltage magnitudes, current magnitudes	Voltage and current phasors, frequency
Measurement model for state estimation	Nonlinear	Linear
Solution of state estimation	Iterative	Direct
Measurement rate	One measurement every one to a few seconds	10 – 60 measurements per second
Synchronization between measurements	Poor: Time skewness	Precise: GPS time