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i Induced Current

= Past experiments with magnetism have
shown the following

= When a magnet is moved towards or away from a
circuit, there 1s an induced current in the circuit

= This iIs still true even If it is the circuit that Is
moved towards or away from the magnet

= When both are at rest with respect to each, there
IS no induced current

= What is the physical reason behind this
phenomena



Magnetic Flux

Just as was the case with electric fields, we can
define a magnetic flux

d(DB — édA

where dA IS an incremental area
with the total flux being given by:

dp = [ B-dA VAR,

Note that this integral is not over a closed surface, for that integral
would yield zero for an answer, since there are no sources or sinks
for the magnetic as there is with electric fields




i Faraday’s Law of Induction

It was Michael Faraday who was able to link the induced
current with a changing magnetic flux

He stated that:

“The induced emf (electromotive force) in a closed loop
equals the negative of the time rate of change of the
magnetic flux through the loop”

_dog
dt

The induced emf opposes the change that is occurring

E =



i Increasing Magnetic Flux

Suppose that we are given a closed circuit through
which the magnetic field, flux, is increasing, then
according to Faraday’s Law there will be an induced
emf in the loop

A

The sense of the emf will be so
that the induced current will set
up a magnetic field that will

. oppose this increase of

) € external flux

(increasing)

B

induced



i Decreasing Magnetic Flux

Suppose now that the magnetic field is decreasing through
the closed loop, Faraday’s Law again states that there will
be an induced emf in the loop

The sense of the emf will be so
that the induced current will
set up a magnetic field that will
try to keep the magnetic flux at
Its original value (It never can)

B\

(decreasing)




i Changing Area

Both of the previous examples were based on a changing
external magnetic flux

How do we treat the problem if the magnetic field is
constant and it is the area that is changing

Basically the same way, it is the changing flux that will be

opposed
If the area Is increasing, then the flux will be increasing
and if the area Is decreasing then the flux will also be

decreasing
In either case, the induced emf will be such that the change
will be opposed



i Lenz’s Law

All of the proceeding can be summarized as follows

“The direction of any magnetic induction

effect is such as to oppose the cause of the
effect”

Remember that the cause of the effect could be either a

changing external magnetic field, or a changing area, or
both

(D =dB - A+ B-dA



Motional EMF: Part One

In previous discussions we had mentioned that a charge
moving in a magnetic field experiences a force

N /\

Suppose now that we have a conducting rod e

moving in a magnetic field as shown: - _
N
The positive charges will experience a magnetic | L
force upwards, while the negative charges will =~ | BegR
experience a magnetic force downwards

’ v
Charges will continue to move until the / - J_”
magnetic force is balanced by an opposing | i
electric force due to the charges that have |
already moved Y




Motional EMF: Part Two

X X X X
So we then have that E =VB ) B
E
But we also have that E =Vg,/L ki
So Vab =vBL & A
We have an induced potential <l
difference across the ends of y Lxx,
the rod
X X
N




i Motional EMF: Part Three

If this rod were partofa ~ (— —~
circuit, we then would _ B "Ir _ |
have an induced current

. :

The sense of the induced emfcan be gotten from Lenz's Law



i Induced Electric Fields: Part One

We again look at the closed
loop through which the
magnetic flux is changing B

A

We now know that there is LIncreasing)

an induced current in the
loop

But what is the force that is
causing the charges to
move in the loop

It can’t be the magnetic field, as the loop is not moving



i Induced Electric Fields: Part Two

The only other thing that could make the charges move
would be an electric field that is induced in the
conductor

This type of electric field is different from what we have
dealt with before

Previously our electric fields were due to charges and these
electric fields were conservative

Now we have an electric field that is due to a changing
magnetic flux and this electric field is non-conservative



i Induced Electric Fields: Part Three

Remember that for conservative forces, the work done In
going around a complete loop is zero

Here there is a net work done in going around the loop
that is given by qg

But the total work done in going around the loop is also
given by o
q § E -di

Equating these two we then have §> E.dl =¢



i Induced Electric Fields: Part Four

But previously we found that the emf was related to the
negative of the time rate of change of the magnetic flux

_dog
dt

g o
So we then have that: §I§ df =——B

This Is just another way of stating Faraday’s Law but for
stationary paths



i Electro-Motive Force: Part One

A
\

tlme

A magnetic fleld, Increasing in time, passes through the loop

An electric field is generated “ringing” the increasing
magnetic field



i Electro-Motive Force: Part Two

Loop integral of E-field is the “emf”:
JE-dl =&

The loop does not have to be a wire - the emf exists even
In vacuum!

When we put a wire there, the electrons respond to the emf,
producing a current



i Displacement Current: Part One

We have used Ampere’s Law to calculate the magnetic field
due to currents

§ B-dl = Holenclosed

where /.. .sq IS the current that cuts through the area
bounded by the integration path

But in this formulation, Ampere’s Law is incomplete



Displacement Current: Part Two

Bulging surface Suppose we have a parallel
plate capacitor being charged
by a current /,

We apply Ampere’s Law to

ic ~ path that is shown.

For this path, the integral is

Justt i lenclosed

Path for
Ampere’s law

Plane
surface

For the plane surface which is bounded by the
path, this is just: I



Displacement Current: Part Three

But for the bulging surface which is also bounded by the
Integration path, |, qq IS ZE€I0

We have a magnetic

field and since there is  Path for
charge on the plates of  Ampere’s law
the capacitor, there is
an electric field in
the region between the —> CEEEE | — —>
plates

Bulging surface

Plane
surface



Displacement Current: Part Four

The charge on the capacitor -
IS related to the electric field by Amperes law S

q:f;EA:g(DE

We define the displacement
current, by
dq dq) E Eliirl;;ce

I Displacement — a 8?

We can now rewrite Ampere’s Law including this displacement
current



Displacement Current

% can now rewrite Ampere’s Law including this

fédrzﬂo(lc +80%)




Maxwell's Equations

now gather all of the governing equations together

L

jl‘ - dA Q:“' (Gauss’s law for E )
0
fE*d = ——F (Faraday’s law )

dt
§E d? = Mg

Collectively these are known as Maxwell’s Equations

dA = 0 (Gauss’s law for B)

~. 1}

dd,,
dt

fc“"Eﬂ.

) (Ampere’s law )
encl



Maxwell's Equations

!| hese four equations describe all of classical electric and

Faraday’s Law links a changing magnetic field with an induced
electric field

Ampere’s Law links a changing electric field with an induced
magnetic field

Further manipulation of Faraday’s and Ampere’s Laws eventually
yield a second order differential equation which is the wave
equation with a prediction for the wave speed of

1

v Ho €0

c= =3x10° m/sec = Speed of Light




i Maxwell's Equations: Part One

V.E=0 VxE-_B
ot
V-B=0 %xéz,uga—E
ot

where E IS the electric field, B is the magnetic field,

¢ IS the permittivity, and n Is the permeability of the
medium.

As written, they assume no charges (or free space).



i Maxwell's Equations: Part Two

Take Vx of: §x|§:_@
o
V x [V x E]z%x[—%]

Change the order of differentiation on the RHS:

W[%E]:-%[%é]



i Maxwell's Equations: Part Three

oF
ot

Substituting for Vx B , we have:

But: §><I§=,ug

?x[ﬁx E’]:_%Wx I§] =V x [6 X E] = —%[ugz—f]

Or:

—

- = . @2 E assuming that u

V X [V X E] = — Iug and ¢ are constant

@tz in time.




i Maxwell's Equations: Part Four

ldentity: Vx[Vx f] = V(V-f)=V?f
Using the identity, ¥x[Vx E]=— ﬂg%ztlzf
becomes: V(V-E)-V2E =— ﬂg%ztlzf
If we now assume zero charge density: p = 0, then

V-E=0
and we’'re left with the Wave Equation!

V2E= ﬂg%ZtE where e = 1/c°



i Why light waves are transverse

Suppose a wave propagates in the x-direction. Then it’'s a function
of x and t (and not y or z), so all y- and z-derivatives are zero:

8EY:8EZ :6By:aBZ =0

oy o0z oy oz
Now, in a charge-free medium, y.E—0 and B/ -B=0

. OE, 5E GE 8B 55 5B
that is, =0
atis, =3 X+ 8y 82 + 8y @Z =0
Substituting the zero oE oB
values, we have: axx =0 and @XX =0

So the longitudinal fields are at most , and not waves.



| Why light waves are transverse

Suppose a wave propagates in the x-direction and has its electric field
along the y-direction [so E,=E,= 0, and ].
What is the direction of the magnetic field?

)
Use: -B_xE- tay i a= B R ayJ
_B_|no %y 8E
So: a [ 8x
In other words: _0B, 8E
8t 8x

And the magnetic field points in the z-direction.



The magnetic-field strength in a light wave

Suppose a wave propagates in the x-direction and has its electric
field in the y-direction. What is the strength of the magnetic field?

0B, _CE (1) VA
Start with: — atZ: 8Xy and Eytr,tJ—EOEXp |ka a)tJ]

\ L5

We canintegrate: B, (X,t) = B ,(X,0) — j By dt

0 Differentiating E, with
Take Bz(X’O) respect to x yields an ik,
and integrating with
respect to t yields a 1/-iw.

So: Bz(x,t):—?il% Eoexp{i(kx—a)t)}

But w/k=c: Bz(x’t):%Ey(X’t)



Electromagnetic Spectrum

The Electromagnetic Spectrum

We give different names to different “parts™ of
the electromagnetic spectrum. These “parts™ are
separated according to wavelength.

These names are very familiar to you.

Your eyes are sensitive to only the very tiny part
of the spectrum which we call “visible light”.

Your eyes'are most sensitive to green and yellow
light. Your eyes are not very sensitive to red and
blue light.



Electromagnetic Spectrum: Part One
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FIGURE 34-1 The electromagnetic spectrum.



Electromagnetic Spectrum: Part Two
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Electromagnetic Waves: Part Two

Electromagnetic Waves

A changing electric field gives rise to a
changing magnetic field, which gives rise to a
changing electric field, which givesrisetoa
changing magnetic field, which ...

=> You don’t need any charges or currents
around to produce “waving” E and B fields.

All electromagnetic waves move at the speed
c = 299792458 m/sec

The “speed of light”

c =AXf



Electromagnetic Waves

Properties of Waves

y(x,t) = y,,sin(kx - »t)

—-={ Distance traveled = v¢

&~ ™

Oscillates in time with period T=21t/®
Frequency fdefined as f=1/T

Oscillates in space with wavelength A=2rc/k

Moves a distance x in a time ¢ with a speed

=> Speed of wave = wavelength x frequency



i Electromagnetic Waves

m E=FE sin(kx - o I
m B=EB_sIn(kx - wi

k=27  w=2rf=2"
A T

1,
=A
A

wave speed =¢ =



i Electromagnetic Field Propagation




i Electromagnetic Field Propagation
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EM Field Intensity

Intensity of EM Radiation

Electromagnetic waves transport energy.

The amount of power (i.e. energy per second)

transported by an electromagnetic wave per unit
surface area is called “‘intensity” /.

Consider a source which emits radiation power P
equally in all directions (i.e. “isotropic™): _
Power is
distributed
uniformly
over a
sphere of
radius




i Poynting Vector

S=iExB

Hy

=This Is a measure of power per area.
Units are watts per meter2.

sDirection is the direction in which the
wave IS moving.



i Poynting Vector

sHowever, since E and B are
perpendicular, 1

S=—FB
Ho
and since —=¢
B
g= 1 g2= ¢ pe

Cly Hy



i Intensity

S =——E; sin’(kx — k)
cu,

S = Intensity = I =

2
2eu, E,
§ =)= i Egm
cu,
E = En



i Radiation Pressure

Electromagnetic radiation transports energy.
It also transports momentum. This means it can
exert a force. This force is called “radiation

pressure”.

Example: Comet tails



i Radiation Pressure

Ap 1AU 1

IA

Al e Al e

F = Y? (complete absorption)

ng (complete reflection)

F



i Radiation Pressure

Pressure = £
A

P, =£ (complete absorption)

P, = if (complete reflection)



i Radiation Pressure
Momentum:

Ap = A;U (complete absorption)

Ap = ¢ (complete reflection)




i Maxwell's Equations

So far we have obtained Maxwell’s four equations:

V.E:pfﬁ%;
€0
V-B=0;
0B

E=—.

V X v

V x B =pup(Js + Je); (steady)

Generally?



i AMPERE’S LAW

Original:
§B-ds =

As modified by Maxwell:

. dd
B.-ds= ( E)
§ ol |+ &,



i Symmetry

Maxwell's Equations in Free Space
g=0 =0

dD,
el

{B-dA=0 §B~€Y§=y0€0€y§f

&E‘d’A=O §E-dVS=



i Continuity

With Maxwell's modification:
AtP: {B-ds= u,

dd X
AtF;: @B‘d’s=ﬂo%#=ﬂo’d
AtP: {B-ds= u,

dd, . ,
& WE =i, "Displacement current”



i Continuity

=1,
g=CYVY

C=6‘0§ Y =Ed

g = eogEd’ = g AE = ,D¢

d gt ¢

)



i ELECTROMAGNETIC WAVES

Maxwell's Equations in Free Space
g=0 i=0

D,

s

{B-dA =0 §B~d§=y0€0€g)f

?E‘dA=0 &E‘%:—



iELECTROI\/IAGNETIC WAVES

cE cB B OE
Aw Ao T TSoMo 5,
oX% ot oX% ot
E E
—=—=0
. B
c= 1 =3.0x10° m/s




i Maxwell's Equations

jEdA=9  E.ds=_9P
o dt

{B-dA =0 §B~ds=u0(i+god;b;‘3)

= o (i +1y)
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