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Introduction to Quantum Mechanics

This power point presentation is part of a series of topics which should be mastered 
prior to diving into the subject of Quantum Computing.  This presentation is an 
introduction to Quantum mechanics which is the most difficult but the most 
important topic to master before going on to learn about Quantum Computing and 
Quantum Information. 
 Quantum objects have characteristics of both particles and waves.
 Quantum mechanics sets limits to how accurately the value of a physical 

quantity can be predicted prior to its measurement, given a complete set of 
initial conditions (the uncertainty principle). 

 The most controversial portions of Quantum Mechanics (The Einstein Podolsky
Rosen Paradox) as articulated by Bell in 1964, is the most important portion of 
the theory of Quantum Mechanics used in developing Quantum Algorithms 
which can only be solved by a Quantum Computer. (This theory is maintained by 
Computing Scientists) 



Part One: Problem of  radiation

In physics, electromagnetic radiation (EMR) consists of  
electromagnetic waves, propagating through space, carrying 
electromagnetic radiant energy. Classically, electromagnetic 
radiation consists of electromagnetic waves, which are 
synchronized oscillations of electric and magnetic fields. 
Electromagnetic waves are created due to periodic change of 
electric or magnetic field. In a vacuum, electromagnetic waves 
travel at the speed of light, commonly denoted c. In homogeneous, 
isotropic media, the oscillations of the two fields are perpendicular 
to each other and perpendicular to the direction of energy and 
wave propagation, forming a transverse wave. 
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The idea of duality is 
rooted in a debate over 
the nature of light and 
matter dating back to 
the 1600s, when 
competing theories of 
light were proposed by 
Huygens and Newton. 

Christiaan Huygens
Dutch  1629-1695
light consists of waves

Sir Isaac Newton
1643-1727 
light consists of particles

Dual nature of radiation



Problem of blackbody radiation
Black-body radiation is the thermal electromagnetic radiation 
within, or surrounding, a body in thermodynamic equilibrium with 
its environment, emitted by a black body (an idealized opaque, 
non-reflective body). It has a specific, continuous, spectrum of 
wavelengths, inversely related to intensity, that depend only on the 
body's temperature, which is assumed, for the sake of calculations 
and theory, to be uniform and constant
At the end of the 19th century, physicists were unable to explain 
why the observed spectrum of black-body radiation, which by then 
had been accurately measured, diverged significantly at higher 
frequencies from that predicted by existing theories. 



Part Two: Max Planck  

In 1900, German physicist Max Planck 
heuristically derived a formula for the 
observed spectrum by assuming that a 
hypothetical electrically charged oscillator in a 
cavity that contained black-body radiation 
could only change its energy in a minimal 
increment, E, that was proportional to the 
frequency of its associated electromagnetic 
wave. This resolved the problem of the 
ultraviolet catastrophe predicted by classical 
physics. This discovery was a pioneering 
insight of modern physics and is of 
fundamental importance to quantum theory. 

Max Planck



Problem of blackbody radiation

If the photon gas is not Planckian, the second law of 
thermodynamics guarantees that interactions (between photons 
and other particles or even, at sufficiently high temperatures, 
between the photons themselves) will cause the photon energy 
distribution to change and approach the Planck distribution. 
In such an approach to thermodynamic equilibrium, photons are 
created or annihilated in the right numbers and with the right 
energies to fill the cavity with a Planck distribution until they reach 
the equilibrium temperature. It is as if the gas is a mixture of sub-
gases, one for every band of wavelengths, and each sub-gas 
eventually attains the common temperature.



Planck’s Assumption:, 1

Planck made two assumptions about the nature of the oscillators in 
the cavity walls.
1. The energy of an oscillator has only certain discrete values En.

 En = n h ƒ
 n is a positive integer called the quantum number
 ƒ is the frequency of oscillation
 h is Planck’s constant

 This says the energy is quantized.
 Each discrete energy value corresponds to a different 

quantum state.
 Each quantum state is represented by the quantum 

number, n.



Planck’s Assumption, 2

The oscillators emit or absorb energy when making a 
transition from one quantum state to another.

 The entire energy difference between the initial 
and final states in the transition is emitted or 
absorbed as a single quantum of radiation.

 An oscillator emits or absorbs energy only when it 
changes quantum states.

 The energy carried by the quantum of radiation is 
E = h ƒ.



Blackbody radiation

Planck’s formula is shown below



By the early part of twentieth century, the wave theory of light seemed 
to be well entrenched.
 In 1905, Albert Einstein proposed that light 

had both wave and particle properties to 
explain the observations in the 
photoelectric effect. 

 Einstein rederived Planck’s results by 
assuming the oscillations of the 
electromagnetic field were themselves 
quantized. 

 In other words, Einstein proposed that 
quantization is a fundamental property of 
light and other electromagnetic radiation.

 This led to the concept of photons.

Part Three: Einstein and the Photon

Albert Einstein



The photoelectric effect 

 The photoelectric effect
occurs when light incident on 
certain metallic surfaces causes 
electrons to be emitted from 
those surfaces.
 The emitted electrons are 

called photoelectrons.
 The name is given because 

of their ejection from a 
metal by light in the 
photoelectric effect



Photoelectric Effect, Results

 At large values of ∆V, the current 
reaches a maximum value.
 All the electrons emitted at E

are collected at C.
 The maximum current increases 

as the intensity of the incident 
light increases.

 When ∆V is negative, the current 
drops.

 When ∆V is equal to or more 
negative than ∆Vs, the current is 
zero.



Photoelectric Effect Feature 1

 Dependence of photoelectron kinetic energy on light intensity
 Classical Prediction

 Electrons should absorb energy continually from the 
electromagnetic waves.

 As the light intensity incident on the metal is increased, 
the electrons should be ejected with more kinetic energy.

 Experimental Result
 The maximum kinetic energy is independent of light 

intensity.
 The maximum kinetic energy is proportional to the 

stopping potential (DVs).



Photoelectric Effect Feature 2

 Time interval between incidence of light and ejection of 
photoelectrons
 Classical Prediction

 At low light intensities, a measurable time interval should 
pass between the instant the light is turned on and the 
time an electron is ejected from the metal.

 This time interval is required for the electron to absorb 
the incident radiation before it acquires enough energy 
to escape from the metal.

 Experimental Result
 Electrons are emitted almost instantaneously, even at 

very low light intensities.



Photoelectric Effect Feature 3

 Dependence of ejection of electrons on light frequency 
 Classical Prediction

 Electrons should be ejected at any frequency as long as 
the light intensity is high enough. 

 Experimental Result
 No electrons are emitted if the incident light falls below 

some cutoff frequency, ƒc.
 The cutoff frequency is characteristic of the material 

being illuminated.
 No electrons are ejected below the cutoff frequency 

regardless of intensity.



Photoelectric Effect Feature 4
 Dependence of photoelectron kinetic energy on light frequency

 Classical Prediction
 There should be no relationship between the frequency 

of the light and the electric kinetic energy.
 The kinetic energy should be related to the intensity of 

the light.
 Experimental Result

 The maximum kinetic energy of the photoelectrons 
increases with increasing light frequency.



Photoelectric Effect Features, Summary

 The experimental results contradict all four classical predictions.
 Einstein extended Planck’s concept of quantization to 

electromagnetic waves.
 All electromagnetic radiation of frequency ƒ from any source 

can be considered a stream of quanta, now called photons.
 Each photon has an energy E and moves at the speed of light in 

a vacuum.
 E = hƒ

 A photon of incident light gives all its energy to a single electron 
in the metal.



Photoelectric Effect, Work Function

 Electrons ejected from the surface of the metal and 
not making collisions with other metal atoms before 
escaping possess the maximum kinetic energy Kmax.

 Kmax = hƒ – φ
 φ is called the work function of the metal.
 The work function represents the minimum 

energy with which an electron is bound in the 
metal.



Photon Explanation of the 
Photoelectric Effect

 Dependence of photoelectron kinetic energy on light intensity
 Kmax is independent of light intensity.
 K depends on the light frequency and the work function.

 Time interval between incidence of light and ejection of the 
photoelectron
 Each photon can have enough energy to eject an electron 

immediately.
 Dependence of ejection of electrons on light frequency

 There is a failure to observe photoelectric effect below a certain 
cutoff frequency, which indicates the photon must have more 
energy than the work function in order to eject an electron.

 Without enough energy, an electron cannot be ejected, regardless 
of the fact that many photons per unit time are incident on the 
metal in a very intense light beam.



Photon Explanation of the 
Photoelectric Effect, cont.

 Dependence of photoelectron kinetic energy on light frequency
 Since Kmax = hƒ – φ
 A photon of higher frequency carries more energy.

 A photoelectron is ejected with higher kinetic energy.
 Once the energy of the work function is exceeded

 There is a linear relationship between the maximum electron 
kinetic energy and the frequency.



Part Five: The Compton Effect

 Compton and Debye extended 
Einstein’s idea of photon momentum.

 The two groups of experimenters 
accumulated evidence of the 
inadequacy of the classical wave 
theory.

 The classical wave theory of light 
failed to explain adequately, the 
scattering of x-rays from electrons.

Arthur Holly Compton



The Compton Effect, Introduction
Compton scattering is inelastic scattering of light by a free charged particle, 
where the wavelength of the scattered light is different from that of the 
incident radiation. The amount by which the light's wavelength changes is 
called the Compton shift. The Compton effect was observed by Arthur 
Holly Compton in 1923 at Washington University in St. Louis. 
The effect is significant because it demonstrates that light cannot be 
explained purely as a wave phenomenon. Thomson scattering, the classical 
theory of an electromagnetic wave scattered by charged particles, cannot 
explain shifts in wavelength at low intensity: classically, light of sufficient 
intensity for the electric field to accelerate a charged particle to a relativistic 
speed will cause radiation-pressure recoil and an associated Doppler shift of 
the scattered light, but the effect would become arbitrarily small at 
sufficiently low light intensities regardless of wavelength. Thus, if we are to 
explain low-intensity Compton scattering, light must behave as if it consists 
of particles. 



The Compton Effect (Electron Scattering) 
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Part Six: classical mechanic Problems

Quantum Mechanics was invented to provide a theoretical basis for atomic 
phenomena which would correlate with experimental results.
 Early experiments on the electronic structure of atoms were centered 

around the light emitted by atoms of hydrogen under thermal 
excitation.

 Contrary to the predictions of classical electro-magnetic theory these 
light pulses were very sharp lines.

 In the early 1900s, the atom was understood to consist of a positive 
nucleus around which electrons move (Rutherford’s model).

 This explanation left a theoretical dilemma: According to the physics of 
the time, an electrically charged particle circling a center would 
continually lose energy as electromagnetic radiation. 

 But this is not the case—atoms are stable. 



Review: Breakdown of classical physics (Crisis)

 Rutherford’s experiment suggested 
that electrons orbit around the 
nucleus like a miniature solar 
system. 

 However, classical physics predicts 
that an orbiting electron 
(accelerating charge) would emit 
electromagnetic radiation and fall 
into the nucleus. So classical 
physics could not explain why 
atoms are stable. There is a ground 

state energy level



Quantization of atomic energy levels

Three classes of 
spectral features: 



Quantization of atomic energy levels



Quantization of atomic energy levels

 Niels Bohr explained atomic line spectra and the stability of atoms 
by postulating that atoms can only be in certain discrete energy 
levels. When an atom makes a transition from one energy level to a 
lower level, it emits a photon whose energy equals that lost by the 
atom.

 An atom can also absorb a photon, provided the photon energy 
equals the difference between two energy levels. 

Insert Figure 39.16



Quantization of atomic energy levels

 An atom can also absorb a photon, provided the photon energy 
equals the difference between two energy levels. 

The master equation for the photon 
energy in these transitions is 



 Bohr developed a model of the atom, in which 
he proposed that energy levels of electrons are 
discrete and that the electrons revolve in stable 
orbits around the atomic nucleus but can jump 
from one energy level (or orbit) to another.

 Although the Bohr model has been supplanted 
by other models, its underlying principles 
remain valid.  

 He conceived the principle of complementarity: 
that items could be separately analyzed in 
terms of contradictory properties, like behaving 
as a wave or a stream of particles. The notion 
of complementarity dominated Bohr's thinking 
in both science and philosophy. 

Part Seven: The Bohr model

Niels Bohr



The Bohr model of hydrogen

 Bohr explained the line spectrum of 
hydrogen with a model in which the 
single hydrogen electron can only be 
in certain definite orbits.

 In the nth allowed orbit, the 
electron has orbital angular 
momentum nh/2π (see Figure on 
the right). 

 Bohr proposed that angular 
momentum is quantized (this will 
turn out to be correct in general in 
quantum mechanics but is not right 
for the hydrogen atom).

Ln=rp=m vn rn



The Bohr model of hydrogen

 Let’s use a different argument based on deBroglie
waves to obtain the same conclusions.

 Think of a standing wave with wavelength λ that 
extends around the circle.

Same as the Bohr 
quantization  condition



The Bohr model of hydrogen 

Here n is the “principal quantum number” and a0 is the “Bohr radius”, 
which is the minimum radius of an electron orbital.



The Bohr model of hydrogen

Now let’s use a Newtonian argument for a 
planetary model of the atom but use the 
Bohr quantization condition. 

(The mass m is that of 
the electron.)

Balance electrostatic and 
centripetal forces

Here we used the Bohr quantization condition



The Bohr model of hydrogen

Here n is the “principal quantum number” and a0 is the “Bohr radius”, 
which is the minimum radius of an electron orbital.



The Bohr model of hydrogen 

This expression for the allowed energies can be rewritten and used to predict 
atomic spectral lines !

Note:
E and U are negative (1/8-1/4=-1/8)



The Bohr model of hydrogen 

Here R is the 
“Rydberg constant”, 
R=1.097 x 107 m-1

The energies of photon transitions between atomic levels is given by 
the following equations



Atomic Spectroscopy of Hydrogen



The Stern–Gerlach experiment demonstrated that the 
spatial orientation of angular momentum is quantized. 
Thus an atomic-scale system was shown to have intrinsic 
quantum properties. 
In the original experiment, silver atoms were sent through a 
spatially varying magnetic field, which deflected them before 
they struck a detector screen, such as a glass slide. Particles 
with non-zero magnetic moment are deflected, due to the 
magnetic field gradient, from a straight path. The screen 
reveals discrete points of accumulation, owing to their 
quantized spin. This experiment was decisive in convincing 
physicists of the reality of angular-momentum quantization in 
atomic-scale systems.
Proposed by Otto Stern in 1921, the experiment was first 
successfully conducted by Walther Gerlach in early 1922. 

Part Eight: Stern-Gerlach

Walther Gerlach

Otto Stern



Otto Stern & Walther Gerlach
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Stern & Gerlach



Angular Momentum: Vector Addition



His 1924 thesis (Research on the Theory of the Quanta) 
introduced his theory of electron waves. This included 
the wave–particle duality theory of matter, based on the 
work of Max Planck and Albert Einstein on light. This 
research culminated in the de Broglie hypothesis stating 
that any moving particle or object had an associated 
wave. De Broglie thus created a new field in physics, the 
wave mechanics, uniting the physics of energy (wave) 
and matter (particle).
Matter waves are a central part of the theory of 
quantum mechanics, being an example of wave–particle 
duality. All matter exhibits wave-like behavior. For 
example, a beam of electrons can be diffracted just like a 
beam of light or a water wave. In most cases, however, 
the wavelength is too small to have a practical impact on 
day-to-day activities. 

Part Nine: Louis de BROGLIE

Louis de Broglie



 The equation λ = h/mv is called the de Broglie 
relation.

 For a photon that has both wave and particle 
characteristics:

 E = hν = hc/λ (recall c= νλ)
 E = mc2

 mc2 = hc/λ or λ = h/mc
 Since mc is the momentum of a photon, can we 

replace this with the momentum of a particle?
 λ = h/mv
 This suggests that particles have wave-like 

characteristics!

de Broglie Relation



The Davisson–Germer experiment was a 
1923-27 experiment by Clinton Davisson and 
Lester Germer at Western Electric (later Bell 
Lab), in which electrons, scattered by the 
surface of a crystal of nickel metal, displayed 
a diffraction pattern. This confirmed the 
hypothesis, advanced by Louis de Broglie in 
1924, of wave-particle duality, and was an 
experimental milestone in the creation of 
quantum mechanics. 

Part Ten: Davisson-Germer

Clinton Joseph Davisson (left)
Lester Germer (Right)



Davisson and Germer

d

θ

2d sin θ = k  λ

Diffraction is similarly observed using a 
mono-energetic electron beam Bragg law 
is verified assuming λ=h/p



Davisson and Germer



Heisenberg was responsible for two major 
contributions to quantum mechanics: 
 His methods is now called the matrix 

formulation of Quantum Mechanics
 His discovery of the Heisenberg Uncertainty 

Principal
The main new idea, non-commuting matrices, is 
justified only by a rejection of unobservable 
quantities. It introduces the non-commutative 
multiplication of matrices by physical reasoning, 
based on the correspondence principle. 

Part Eleven: Werner Heisenberg

Werner Heisenberg



In matrix mechanics, the mathematical formulation of quantum mechanics, 
any pair of non-commuting self-adjoint operators representing observables 
are subject to similar uncertainty limits. An eigenstate of an observable 
represents the state of the wavefunction for a certain measurement value 
(the eigenvalue). For example, if a measurement of an observable A is 
performed, then the system is in a particular eigenstate Ψ of that 
observable. However, the particular eigenstate of the observable A need not 
be an eigenstate of another observable B: If so, then it does not have a 
unique associated measurement for it, as the system is not in an eigenstate 
of that observable. 

Werner Heisenberg: Matrix Mechanics



 Mathematically, in wave mechanics, the uncertainty relation between 
position and momentum arises because the expressions of the wavefunction 
in the two corresponding orthonormal bases in Hilbert space are Fourier 
transforms of one another (i.e., position and momentum are conjugate 
variables). A nonzero function and its Fourier transform cannot both be 
sharply localized at the same time. 

 Heisenberg’s uncertainty principle is a relation that states that the 
product of the uncertainty in position (∆x) and the uncertainty in momentum 
(m∆vx) of a particle can be no larger than h/4π.  

 When m is large (for example, a baseball) the uncertainties are small, but 
for electrons, high uncertainties disallow defining an exact orbit.

The Heisenberg Uncertainty Principal  
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 A similar tradeoff between the variances of Fourier conjugates 
arises in all systems underlain by Fourier analysis, for example in 
sound waves: A pure tone is a sharp spike at a single frequency, 
while its Fourier transform gives the shape of the sound wave in 
the time domain, which is a completely delocalized sine wave. 

 In quantum mechanics, the two key points are that the position 
of the particle takes the form of a matter wave, and momentum 
is its Fourier conjugate, assured by the de Broglie relation p = 
ħk, where k is the wavenumber. 

The Heisenberg Uncertainty Principal  



Heisenberg’s Uncertainty Principle
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 In January 1926, Schrödinger published the 
paper: Quantization as an Eigenvalue Problem) 
on wave mechanics, in which he presented 
what is now known as the Schrödinger 
equation. In this paper, he gave a "derivation" 
of the wave equation for time-independent 
systems and showed that it gave the correct 
energy eigenvalues for a hydrogen-like atom. 

 A second paper was submitted just four weeks 
later that solved the quantum harmonic 
oscillator, rigid rotor, and diatomic molecule 
problems and gave a new derivation of the 
Schrödinger equation. 

Part Twelve: Erwin Schrödinger

Erwin Schrödinger



 A third paper, published in May, showed the equivalence of his approach to that of 
Heisenberg and gave the treatment of the Stark effect. 

 A fourth paper in this series showed how to treat problems in which the system 
changes with time, as in scattering problems. (This was arguably the moment when 
quantum mechanics switched from real to complex numbers.) When he introduced 
complex numbers in order to lower the order of the differential equations, something 
magical happened, and all of wave mechanics was at his feet. 

 Schrödinger was not entirely comfortable with the implications of quantum theory 
referring to his theory as "wave mechanics.“

 He wrote about the probability interpretation of quantum mechanics, saying, "I don't 
like it, and I'm sorry I ever had anything to do with it." 

 (Just in order to ridicule the Copenhagen interpretation of quantum mechanics, he 
contrived the famous thought experiment called Schrödinger's cat paradox.) 

Erwin Schrödinger



),(
2

),()),((
8 2

2

2

2

2

2

2

2

tq
ti

htqtqV
zyxm

h
iii Ψ

∂
∂

−=Ψ+
∂
∂

+
∂
∂

+
∂
∂

−
ππ

 De Broglie postulated that every particles has an associated wave of 
wavelength:

 Wave nature of matter confirmed by electron diffraction studies etc (see 
earlier).

 If matter has wave-like properties then there must be a mathematical 
function that is the solution to a differential equation that describes 
electrons, atoms and molecules. 

 The differential equation is called the Schrödinger equation and its solution 
is called the wavefunction, Ψ.

 In differential operator form, the time dependent Schrodinger equation is:

The Schrödinger Wave Equation



 In 1925, Born and Heisenberg formulated the matrix 
mechanics representation of quantum mechanics. On 9 
July, Heisenberg gave Born a paper entitled "Quantum-
Theoretical Re-interpretation of Kinematic and 
Mechanical Relations" to review, and submit for 
publication. 

 In the paper, Heisenberg formulated quantum theory, 
avoiding the concrete, but unobservable, 
representations of electron orbits by using parameters 
such as transition probabilities for quantum jumps, 
which necessitated using two indexes corresponding to 
the initial and final states.

 When Born read the paper, he recognized the 
formulation as one which could be transcribed and 
extended to the systematic language of matrices, which 
he had learned from his study under Jakob Rosanes.

Part Thirteen: Max Born: One

Max Born



 Up until this time, matrices were seldom used by physicists; they were 
considered to belong to the realm of pure mathematics. 

 Gustav Mie had used them in a paper on electrodynamics in 1912, and 
Born had used them in his work on the lattices theory of crystals in 1921.

 While matrices were used in these cases, the algebra of matrices with their 
multiplication did not enter the picture as they did in the matrix 
formulation of quantum mechanics. 

 With the help of his assistant and former student Pascual Jordan, Born 
began immediately to make a transcription and extension, and they 
submitted their results for publication; the paper was received for 
publication just 60 days after Heisenberg's paper. 

 A follow-on paper was submitted for publication before the end of the year 
by all three authors. The result was a surprising formulation: 

Part Thirteen: Max Born: Two



 A follow-on paper was submitted for publication before the end of the year 
by all three authors. The result was a surprising formulation: 

 Born was surprised to discover that Paul Dirac had been thinking along the same 
lines as Heisenberg. 

 Soon, Wolfgang Pauli used the matrix method to calculate the energy values of the 
hydrogen atom and found that they agreed with the Bohr model. 

 Another important contribution was made by Erwin Schrödinger, who looked at the 
problem using wave mechanics. This had a great deal of appeal to many at the 
time, as it offered the possibility of returning to deterministic classical physics. 

 Born would have none of this, as it ran counter to facts determined by experiment.
 He formulated the now-standard interpretation of the probability density function for 

ψ*ψ in the Schrödinger equation.

Part Thirteen: Max Born; Three



As mentioned previously the Time Dependent Schrödinger Equation has 
solutions that are inherently complex ⇒Ψ (x,t) cannot be a physical wave 
(e.g. electromagnetic waves). Therefore how can Ψ (x,t) relate to real 
physical measurements on a system?
The Born Interpretation: Probability of finding a particle in a small length dx 
at position x and time t is equal to:

Ψ*Ψ is real as required for a probability distribution and is the probability per 
unit length (or volume in 3d). 

The Born interpretation therefore calls Ψ the probability amplitude, Ψ*Ψ
(= P(x,t) ) the probability density and Ψ*Ψ dx the probability.

Born Interpretation of Ψ(x,t)

dxtxPdxtxdxtxtx ),(),(),(),( 2* =Ψ=ΨΨ



 Pauli proposed in 1924 a new quantum degree 
of freedom (or quantum number) with two 
possible values, to resolve inconsistencies 
between observed molecular spectra and the 
developing theory of quantum mechanics. 

 He formulated the Pauli exclusion principle, 
perhaps his most important work, which stated 
that no two electrons could exist in the same 
quantum state

 He identified four quantum numbers including 
his new two-valued degree of freedom. 

 The idea of spin originated with Ralph Kronig. 

Part Fourteen: Wolfgang Pauli

Wolfgang Pauli



 A year later, George Uhlenbeck and Samuel Goudsmit
identified Pauli's new degree of freedom as electron spin. 
 In 1926, shortly after Heisenberg published the matrix theory 

of modern quantum mechanics, Pauli used it to derive the 
observed spectrum of the hydrogen atom. This result was 
important in securing credibility for Heisenberg's theory. 
 Pauli introduced the 2 × 2 Pauli matrices as a basis of spin 

operators, thus solving the nonrelativistic theory of spin. This 
work, including the Pauli equation, is sometimes said to have 
influenced Paul Dirac in his creation of the Dirac equation for 
the relativistic electron. 

Part Fourteen: Wolfgang Pauli



 Dirac's first step into a new quantum theory 
was taken late in September 1925. Ralph 
Fowler, his research supervisor, had received a 
proof copy of an exploratory paper by Werner 
Heisenberg in the framework of the old 
quantum theory of Bohr and Sommerfeld. 

 Heisenberg leaned heavily on Bohr's 
correspondence principle but changed the 
equations so that they involved directly 
observable quantities, leading to the matrix 
formulation of quantum mechanics. 

 Fowler sent Heisenberg's paper on to Dirac, 
who was on vacation in Bristol, asking him to 
look into this paper carefully.

Part Fifteen: Paul Dirac

Paul Dirac



 Dirac's attention was drawn to a mysterious mathematical relationship, at first 
sight unintelligible, that Heisenberg had established. 

 Several weeks later, back in Cambridge, Dirac suddenly recognized that this 
mathematical form had the same structure as the Poisson brackets that occur in 
the classical dynamics of particle motion. 

 At the time, his memory of Poisson brackets was rather vague, but he found E. 
T. Whittaker’s Analytical Dynamics of Particles and Rigid Bodies illuminating.

 From his new understanding, he developed a quantum theory based on non-
commuting dynamical variables. This led him to the most profound and 
significant general formulation of quantum mechanics to date. 

 Dirac's formulation allowed him to obtain the quantization rules in a novel and 
more illuminating manner. For this work, published in 1926, Dirac received a 
PhD from Cambridge. 

 This formed the basis for Fermi-Dirac statistics that applies to systems consisting 
of many identical spin 1/2 particles (i.e. that obey the Pauli exclusion principle), 

Paul Dirac: The Dirac Equation



 Building on 2×2 spin matrices which were discovered by Wolfgang Pauli he 
proposed the Dirac equation as a relativistic equation of motion for the wave 
function of the electron. 

 This work led Dirac to predict the existence of the positron, the electron's 
antiparticle. 

 The positron was observed by Carl Anderson in 1932. Dirac's equation also 
contributed to explaining the origin of quantum spin as a relativistic 
phenomenon. 

 The necessity of fermions (matter) being created and destroyed in Enrico 
Fermi's 1934 theory of beta decay led to a reinterpretation of Dirac's equation as 
a "classical" field equation for any point particle of spin ħ/2, itself subject to 
quantisation conditions involving anti-commutators. 

 Thus reinterpreted, in 1934 by Werner Heisenberg, as a (quantum) field 
equation elementary matter particles 

 The Dirac field equation is as central to theoretical physics as the Maxwell , 
Yang–Mills and Einstein field equations. 

Paul Dirac: The Dirac Equation



Dirac's The Principles of Quantum Mechanics, published in 1930, is 
a landmark in the history of science. It quickly became one of the 
standard textbooks on the subject and is still used today. In that 
book, Dirac incorporated the previous work of Werner Heisenberg 
on matrix mechanics and of Erwin Schrödinger on wave mechanics 
into a single mathematical formalism that associates measurable 
quantities to operators acting on the Hilbert space of vectors that 
describe the state of a physical system. The book also introduced 
the Dirac delta function. Following his 1939 article, he also included 
the bra–ket notation in the third edition of his book, thereby 
contributing to its universal use nowadays. 

Paul Dirac: The Principals of 
Quantum Mechanics



Von Neumann was the first to establish a rigorous 
mathematical framework for quantum mechanics, 
known as the Dirac–von Neumann axioms. After 
having completed the axiomatization of set theory, 
he began to confront the axiomatization of 
quantum mechanics. He realized in 1926 that a 
state of a quantum system could be represented 
by a point in a (complex) Hilbert space that, in 
general, could be infinite-dimensional even for a 
single particle. In this formalism of quantum 
mechanics, observable quantities such as position 
or momentum are represented as linear operators 
acting on the Hilbert space associated with the 
quantum system.
]

Part Sixteen: John von Neumann

John von Neumann

https://en.wikipedia.org/wiki/John_von_Neumann#cite_note-FOOTNOTEMacrae1992142-150


 The study of quantum mechanics was thereby reduced to the mathematics
of Hilbert spaces and linear operators acting on them. 
 For example, the uncertainty principle, according to which the determination of the position 

of a particle prevents the determination of its momentum and vice versa, is translated into 
the non-commutativity of the two corresponding operators.

 Von Neumann's abstract treatment permitted him also to confront the 
foundational issue of determinism versus non-determinism, and in the 
book he presented a proof that the statistical results of quantum 
mechanics could not possibly be averages of an underlying set of 
determined "hidden variables," as in classical statistical mechanics. 

 . In 1935, Grete Hermann published a paper arguing that the proof 
contained a conceptual error and was therefore invalid. Hermann's work 
was largely ignored until after John S. Bell made essentially the same 
argument in 1966. 

Part Sixteen: John von Neumann



 In 2010, Jeffrey Bub argued that Bell had misconstrued von Neumann's proof, and 
pointed out that the proof, though not valid for all hidden variable theories, does 
rule out a well-defined and important subset. Bub also suggests that von Neumann 
was aware of this limitation and did not claim that his proof completely ruled out 
hidden variable theories. The validity of Bub's argument is, in turn, disputed. In any 
case, Gleason's theorem of 1957 fills the gaps in von Neumann's approach. 

 Von Neumann's proof inaugurated a line of research that ultimately led, through 
Bell's theorem and the experiments of Alain Aspect in 1982, to the demonstration 
that quantum physics either requires a notion of reality substantially different from 
that of classical physics, or must include nonlocality in apparent violation of special 
relativity.

Part Sixteen: John von Neumann



 In his classic presentation: The Mathematical Foundations of Quantum Mechanics, 
von Neumann deeply analyzed the so-called measurement problem. He concluded 
that the entire physical universe could be made subject to the universal wave 
function. Since something "outside the calculation" was needed to collapse the 
wave function, von Neumann concluded that the collapse was caused by the 
consciousness of the experimenter. 

 He argued that the mathematics of quantum mechanics allows the collapse of the 
wave function to be placed at any position in the causal chain from the 
measurement device to the "subjective consciousness" of the human observer.

 Although this view was accepted by Eugene Wigner, the Von Neumann–Wigner 
interpretation never gained acceptance among the majority of physicists.

 Viewing von Neumann's work on quantum mechanics as an part of the fulfilment of 
Hilbert's sixth problem, noted mathematical physicist A. S. Wightman said in 1974 
his axiomization of quantum theory was perhaps the most important axiomization
of a physical theory to date. 

 In the publication of his 1932 book, quantum mechanics became a mature theory in 
the sense it had a precise mathematical form, which allowed for clear answers to 
conceptual problems.

The Mathematical Foundations of 
Quantum Mechanics



Part Seventeen: The wave Equation
 The state function Ψ is given as a solution of

where is the total energy operator, that is the Hamiltonian operator.
 The hamiltonian function is the total energy, T+V, where T is the kinetic energy and 

V is the potential energy. In operator form

Ψ=Ψ EĤ Schrodinger equation

Ĥ

VTH ˆˆˆ +=

where is the operator for kinetic energy and      is the operator for potential energy. 
In differential operator form, the time dependent Schrodinger equation (TDSE) is
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The wave Equation: Two
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where Ĥ is called the Hamiltonian operator which is the differential 
operator that represents the total energy of the particle. 

Thus

where the momentum operator is

Thus shorthand for TDSE (Time 
Dependent Schrödinger Wave Equation t

iH
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The time-dependent Wave Equation
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and we have (KE + PE) × wavefunction = (Total energy) × wavefunction 
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Points of note:
1. The TDSE is one of the postulates of quantum mechanics. Though the SE 

cannot be derived, it has been shown to be consistent with all experiments.

2. SE is first order with respect to time (cf. classical wave equation).

3. SE involves the complex number i and so its solutions are essentially complex. 



Expectation values
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Thus if we know Ψ(x, t) (a solution of TDSE), then knowledge of Ψ*Ψ dx
allows the average position to be calculated:

In the limit that δx→ 0 then the summation becomes:
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Ψ== dxtxxdxxPxx 2222 ),()(Similarly

The average is also know as the expectation value and are very important in 
quantum mechanics as they provide us with the average values of physical 
properties.



Normalisation
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Total probability of finding a particle anywhere must be 1:

This requirement is known as the Normalisation condition. (This condition 
arises because the SE is linear in Ψ and therefore if Ψ is a solution of TDSE 
then so is cΨ where c is a constant.)
Hence if original unnormalised wavefunction is Ψ(x,t), then the normalisation 
integral is:
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And the (re-scaled) normalised wavefunction  Ψnorm = (1/N) Ψ.



Eigenvalue equations

The Schrödinger Equation is the form of an Eigenvalue Equation:

ψψ EH =ˆ

where Ĥ is the Hamiltonian operator,

ψ is the wavefunction and is an eigenfunction of Ĥ;

E is the total energy (T + V) and an eigenvalue of Ĥ. E is just a constant!
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We have seen how we can use the probability distribution ψ∗ψ to calculate the average 
position of a particle. What happens if we want to calculate the average energy or 
momentum because they are represented by the following differential operators:

Do the operators work on ψ∗ψ, or on ψ, or on ψ∗ alone?

Take TISE and multiply from 
left by ψ∗ and integrate:

NB ψ is normalised.

Suggest that in order to calculate the average value
of the physical quantity associated with the QM 
operator we carry out the following integration: ∫ Ω∗ xnn dˆ ψψ

Eigenvalue equations



Momentum and energy expectation values
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is the operator for the x component of momentum.

Example: Derive an expression for the average 
energy of a free particle. m
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Since V = 0 the expectation value for energy for a particle moving in one dimension is
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The expectation value of momentum involves the representation of momentum as a 
quantum mechanical operator:
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