
Chapter 3 Objectives

Developed for the Azera Group

By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.

INTRODUCTION TO LINUX

Some History: MULTICS-One

 Multics ("Multiplexed Information and Computing Service") is
one of the most influential early time-sharing operating system based
on the concept of a single-level memory. It has been said that Multics
"has influenced all modern operating systems since, from
microcomputers to mainframes."

 Initial planning and development for Multics started in 1964, in
Cambridge, Massachusetts. Originally it was a cooperative project led by
MIT (Project MAC) along with General Electric and Bell Labs. It was
developed on the GE 645 computer, which was specially designed for it;
the first one was delivered to MIT in January, 1967.

 Multics was conceived as a commercial product for General Electric, and
became one for Honeywell, albeit not very successfully. Due to its many
novel and valuable ideas, Multics has had a significant influence on
computer science despite its perceived faults.

Some History: MULTICS-Two

 Multics has numerous features intended to ensure high availability so
that it would support a computing utility similar to the telephone and
electricity utilities.

 Modular hardware structure and software architecture are used to
achieve this.

 The system can grow in size by simply adding more of the appropriate
resource, be it computing power, main memory, or disk storage.

 Separate access control lists on every file provide flexible information
sharing, but complete privacy when needed.

 Multics has a number of standard mechanisms to allow engineers to
analyze the performance of the system, as well as a number of adaptive
performance optimization mechanisms.

Some History: MULTICS-Three

 Multics has a number of standard mechanisms to allow engineers to
analyze the performance of the system, as well as a number of adaptive
performance optimization mechanisms.

 Bell Labs pulled out of the project in 1969; some of the people who had
worked on it there went on to create the Unix system. Multics
development continued at MIT and General Electric. At MIT in 1975, use
of Multics was declining and did not recover by 1976 to prior
levels.[15][16] Finally by slashing prices, MIT managed to lure users back
to Multics in 1978.[17]

 The design and features of Multics were highly influential in the design
of the Unix operating system. Unix was originally written by two Multics
programmers, Ken Thompson and Dennis Ritchie.

 The influence of Multics on the early Unix Operating System is evident
in many areas, including the naming of some commands.

https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Multics#cite_note-15
https://en.wikipedia.org/wiki/Multics#cite_note-16
https://en.wikipedia.org/wiki/Multics#cite_note-17

Some History: UNIX-One
 The Unix operating system was conceived and implemented in 1969, at AT&T's

Bell Labs, in the United States by Ken Thompson, Dennis Ritchie, Douglas
McIlroy, and Joe Ossanna. Unix was originally written by two Multics
programmers, Ken Thompson and Dennis Ritchie.

 First released in 1971, Unix was written entirely in assembly language. In 1973 in
a key, pioneering approach, it was rewritten in the C programming language by
Dennis Ritchie (with the exception of some hardware and I/O routines). The
availability of a high-level language implementation of Unix made its porting to
different computer platforms easier.

 Due to an earlier antitrust case forbidding it from entering the computer
business, AT&T was required to license the operating system's source code to
anyone who asked. As a result, Unix grew quickly and became widely adopted by
academic institutions and businesses.

 In 1984, AT&T divested itself of Bell Labs; freed of the legal obligation requiring
free licensing, Bell Labs began selling Unix as a proprietary product, where users
were not legally allowed to modify Unix.

Some History: BSD-One

 The earliest distributions of Unix from Bell Labs in the 1970s included the
source code to the operating system, allowing researchers at universities to
modify and extend Unix. The operating system arrived at Berkeley in 1974.

 A PDP-11/45 (Designed and sold by Digital Equipment Corporation) was
bought to run the system, but for budgetary reasons, this machine was
shared with the mathematics and statistics groups at Berkeley, who used
RSTS, (a multi-user time-sharing operating system), so that Unix only ran
on the machine eight hours per day

 A larger PDP-11/70 was installed at Berkeley the following year, using money
from the Ingres database project.

 Understanding BSD (Berkeley Software Distribution) requires delving far back
into the history of Unix.

 BSD began life as a variant of Unix that programmers at the University of
California at Berkeley, initially led by Bill Joy, began developing in the late
1970s.

Some History: BSD-Two
 At first, BSD was not a clone of Unix, or even a substantially different

version of it. It just included some extra features, which were intertwined
with code owned by AT&T.

 In 1975, Ken Thompson took a sabbatical from Bell Labs and came to
Berkeley as a visiting professor. He helped to install Version 6 Unix and
started working on a Pascal implementation for the system.

 Graduate students Chuck Haley and Bill Joy improved Thompson's Pascal
and implemented an improved text editor. Other universities became
interested in the software at Berkeley.

 In 1977 Joy started compiling the first Berkeley Software Distribution
(1BSD), which was released on March 9, 1978. 1BSD was an add-on to
Version 6 Unix rather than a complete operating system in its own right.

 The second Berkeley Software Distribution (2BSD), released in May 1979,
included updated versions of the 1BSD software as well as two new
programs by Joy that persist on Unix systems to this day: the vi text editor
and the C shell.

Some History: BSD-Three
 Several operating systems are based on BSD, including FreeBSD, OpenBSD,

NetBSD, MidnightBSD, GhostBSD, Darwin and DragonFly BSD. Both NetBSD
and FreeBSD were created in 1993. They were initially derived from 386BSD
(also known as "Jolix"), and merged the 4.4BSD-Lite source code in 1994.
OpenBSD was forked from NetBSD in 1995, and DragonFly BSD was forked
from FreeBSD in 2003.

 BSD was also used as the basis for several proprietary versions of Unix, such
as Sun's SunOS, Sequent's DYNIX, NeXT's NeXTSTEP, DEC's Ultrix and OSF/1
AXP (now Tru64 UNIX).

 NeXTSTEP later became the foundation for Apple Inc.'s macOS.

Some History: MINIX-One

 Andrew S. Tanenbaum created MINIX at Vrije Universiteit in Amsterdam to exemplify
the principles conveyed in his textbook, Operating Systems: Design and
Implementation (1987).

 An abridged 12,000 lines of the C source code of the kernel, memory manager, and
file system of MINIX 1.0 are printed in the book. Prentice-Hall also released MINIX
source code and binaries on floppy disk with a reference manual. MINIX 1 was
system-call compatible with Seventh Edition Unix.

 Tanenbaum originally developed MINIX for compatibility with the IBM PC and IBM
PC/AT 8088 microcomputers available at the time.

 Minix 3 was publicly announced on 24 October 2005 by Tanenbaum during his keynote
speech at the Association for Computing Machinery (ACM) Symposium on Operating
Systems Principles (SOSP). Although it still serves as an example for the new edition
of Tanenbaum's textbook, coauthored by Albert S. Woodhull, it is comprehensively
redesigned to be "usable as a serious system on resource-limited and embedded
computers and for applications requiring high reliability."

https://en.wikipedia.org/wiki/8088

Some History: MINIX-Two

 Minix 3 currently supports IA-32 and ARM architecture systems. It is
available in a live CD format that allows it to be used on a computer without
installing it on the hard drive, and in versions compatible with hardware
emulating and virtualizing systems, including Bochs, QEMU, VMware
Workstation and Fusion, VirtualBox, and Microsoft Virtual PC.

 Version 3.1.2 was released on 18 April 2006. It was the first version after
MINIX had been relicensed under the BSD-3-Clause license.

 Version 3.1.5 was released on 5 November 2009. It contains X11, emacs, vi,
cc, gcc, perl, python, ash, bash, zsh, ftp, ssh, telnet, pine, and over 400
other common Unix utility programs.

 With the addition of X11, this version marks the transition away from a text-
only system. In many cases it can automatically restart a crashed driver
without affecting running processes.

Some History: MINIX-Three
 MINIX is self-healing and can be used in applications demanding high reliability. MINIX

3 also has support for virtual memory management, making it suitable for desktop OS
use.

 As of version 3.2.0, the userland was mostly replaced by that of NetBSD and support
from pkgsrc became possible, increasing the available software applications that
MINIX can use.

 Clang replaced the prior compiler (with GCC now having to be manually compiled),
and GDB, the GNU debugger, was ported.

 Minix 3.3.0, released in September 2014, brought ARM support.
 Minix 3.4.0RC, Release Candidates became available in January 2016;
 Minix supports many programming languages, including C, C++, FORTRAN, Modula-2,

Pascal, Perl, Python, and Tcl.
 Minix 3 still has an active development community with over 50 people attending

MINIXCon 2016, a conference to discuss the history and future of MINIX.
 All Intel chipsets post-2015 are running MINIX 3 internally as the software component

of the Intel Management Engine.

Minix and Linux

 Linus Torvalds used and appreciated Minix, but his design deviated from
the Minix architecture in significant ways, most notably by employing a
monolithic kernel instead of a microkernel. This was disapproved of by
Tanenbaum in the Tanenbaum–Torvalds debate. Tanenbaum explained
again his rationale for using a microkernel in May 2006.

 Early Linux kernel development was done on a Minix host system, which
led to Linux inheriting various features from Minix, such as the Minix file
system.

 Linux was originally developed for personal computers based on the
Intel x86 architecture, but has since been ported to more platforms
than any other operating system.[22] Because of the dominance of the
Linux-based Android on smartphones, Linux also has the largest
installed base of all general-purpose operating systems.

https://en.wikipedia.org/wiki/Linux#cite_note-25

UNIX
 Unix (officially trademarked as UNIX®) is a computer operating system

originally developed in the 1960s and 1970s by a group of AT&T employees at
Bell Labs including Ken Thompson, Dennis Ritchie and Douglas McIlroy. Today's
Unix systems are split into various branches, developed over time by AT&T as
well as various commercial vendors and non-profit organizations.

 The present owner of the trademark UNIX® is The Open Group, an industry
standards consortium. Only systems fully compliant with and certified to the
Single UNIX Specification qualify as "UNIX®" (others are called "Unix system-
like" or "Unix-like").

 During the late 1970s and early 1980s, Unix's influence in academic circles led
to large-scale adoption (particularly of the BSD variant of Unix) by commercial
startups, the most notable of which is Sun Microsystems. Today, in addition to
certified Unix systems, Unix-like operating systems such as Linux, Mac OS X and
BSD derivatives are commonly encountered.

http://en.wikipedia.org/wiki/AT%26T

UNIX

Unix Shell

 A Unix shell, also called "the command line", provides the traditional
user interface for the Unix operating system and for Unix-like systems.

 bash – Bourne Again SHell, (mostly) sh-compatible and csh-compatible,
standard shell on Linux systems and Mac OS X.

 csh – C shell. Written by Bill Joy for BSD systems.
 ksh – Korn shell, standard shell on many proprietary Unix systems,

powerful successor to the Unix Bourne shell (sh), written by David Korn,
 rc – originally written for Plan 9.
 sh – Bourne shell, only shell present on all UNIX and Unix-like systems,

written by Stephen Bourne for Version 7 Unix.
 tcsh – TENEX C shell, standard shell on BSD systems.
 zsh – Z shell.

GNU-One

 The GNU project was publicly announced by Richard Stallman IN
September 1983. Stallman announced the plan for the GNU operating
system on several ARPANET mailing lists and USENET.

 He started the project on his own and describes: "As an operating system
developer, I had the right skills for this job. So even though I could not
take success for granted, I realized that I was elected to do the job. I
chose to make the system compatible with Unix so that it would be
portable, and so that Unix users could easily switch to it."

 In 1985, Stallman published the GNU Manifesto, which outlined his
motivation for creating a free operating system called GNU, which would
be compatible with Unix. The name GNU is a recursive acronym for "GNU's
Not Unix".

GNU-Two
 The same year he started a nonprofit corporation called the Free Software

Foundation to employ free software programmers and provide a legal
infrastructure for the free software movement. Stallman was the non-
salaried president of the FSF, which is a 501(c)(3) nonprofit organization
founded in Massachusetts.

 GNU was to be a complete Unix-like operating system composed entirely of
free software. Software development work began in January 1984. By the
beginning of the 1990s, the project had produced or collected most of the
necessary components of this system, including libraries, compilers, text
editors, and a Unix shell.

 Thus the GNU mid-level portions of the operating system were almost
complete. The upper level could be supplied by the X Window System, but
the lower level, which consisted of a kernel, device drivers, and daemons,
was still mostly lacking. In 1990, the GNU project began developing the
GNU Hurd kernel, based on the Mach microkernel.

Linux-Introduction
 In 1991, work on the Linux kernel began by

Linus Torvalds while he was attending the
University of Helsinki.

 Torvalds originally created the Linux kernel as
a non-commercial replacement for the Minix
kernel; he later changed his original non-free
license to the GPLv2, which differed primarily
in that it also allowed for commercial
redistribution.

 Although dependent on the Minix userspace
at first, work from both Linux kernel
developers and the GNU project allowed
Linux to work with GNU components. Thus
Linux filled the last major gap in running a
complete, fully functional operating system
built from free software. Linus Torvalds

The Linux Kernel

 Linux was originally developed for personal computers based on the Intel x86
architecture, but has since been ported to more platforms than any other
operating system.

 Because of the dominance of the Linux-based Android on smartphones, Linux
also has the largest installed base of all general-purpose operating systems.

 Although Linux is used by only around 2.3 percent of desktop computers, the
Chromebook, which runs the Linux kernel-based Chrome OS, dominates the US
K–12 education market and represents nearly 20 percent of sub-$300 notebook
sales in the US.

 Linux is the leading operating system on servers (over 96.4% of the top 1 million
web servers' operating systems are Linux), leads other big iron systems such as
mainframe computers, and is the only OS used on TOP500 supercomputers
(since November 2017, having gradually eliminated all competitors).

Kernel-Introduction
 In computing, the kernel is the central component of most

computer operating systems (OSs). Its responsibilities
include managing the system's resources and the
communication between hardware and software components.

 As a basic component of an operating system, a kernel
provides the lowest-level abstraction layer for the resources
(especially memory, processors and I/O devices) that
applications must control to perform their function. It
typically makes these facilities available to application
processes through inter-process communication mechanisms
and system calls.

 While monolithic kernels will try to achieve these goals by
executing all the code in the same address space to increase
the performance of the system, microkernels run most of
their services in user space, aiming to improve
maintainability and modularity of the codebase.

http://en.wikipedia.org/wiki/Image:Kernel.png
http://en.wikipedia.org/wiki/Image:Kernel-simple.png

Linux Distributions

 A Linux distribution, often simply distribution or distro, is a
member of the Linux family of Unix-like operating systems
comprised of the Linux kernel, the non-kernel parts of the GN
operating system, and assorted other software.

 Linux distributions take a variety of forms, from fully-featured
desktop and server operating systems to minimal environments
(typically for use in embedded systems, or for booting from a
floppy).

 The most common Linux Distributions are: CentOS, Debian,
Fedora, Gentoo, Knoppix, Mandriva Linux, Red Hat Enterprise
Linux (Now owned by IBM), Slackware (One of the oldest
distributions still maintained and used), SUSE Linux and Ubuntu.

Bash-The Linux Shell
 Bash is a Unix shell written for the GNU Project. The name of

the actual executable is bash.
 Its name is an acronym for Bourne-again shell. The Bourne shell

(sh), was an early and important Unix shell written by Stephen
Bourne and distributed with Version 7 Unix circa 1978. Bash was
created in 1987 by Brian Fox, using the Bourne shell as a
starting point of design.

 Bash is the default shell on most Linux systems as well as on
Mac OS X and it can be run on most Unix-like operating systems.

 It has also been ported to Microsoft Windows within the Cygwin
POSIX emulation environment for Windows.

 Released under the GNU General Public License, Bash is free
software.

Linux Filesystem-One
 The Linux operating systems creates a virtual file system, which makes all the

files on all the devices appear to exist in a single hierarchy. This means that
there is one root directory, and every file existing on the system is located under
it somewhere.

 The Linux operating system assign a device name to each device, but this is not
how the files on that device are accessed. Instead, to gain access to files on
another device, the operating system must first be informed where in the
directory tree those files should appear.

 This process is called mounting a file system. For example, to access the files on
a CD-ROM, one must tell the operating system "Take the file system from this
CD-ROM and make it appear under such-and-such directory." The directory
given to the operating system is called the mount point . It may be empty, or it
may contain subdirectories for mounting individual devices.

 Generally, only the administrator (i.e. root user) may authorize the mounting of
file systems.

 The Linux operating system includes software and tools that assist in the
mounting process and provide it new functionality.

Linux Filesystem-Two

 In many situations, file systems other than the root need to be available as soon
as the operating system has booted. The system therefore provide a facility for
mounting all user file systems at boot time.

 Removable media allow programs and data to be transferred between machines
without a physical connection.

 Supermounting; For example, a USB drive that has been supermounted can
be physically removed from the system. Under normal circumstances, the disk
should have been synchronized and then unmounted before its removal.
Provided synchronization has occurred, a different disk can be inserted into the
drive. The system automatically notices that the disk has changed and updates
the mount point contents to reflect the new medium.

 The automounter will automatically mount a file system when a reference is
made to the directory atop which it should be mounted. This is usually used for
file systems on network servers, rather than relying on events such as the
insertion of media, as would be appropriate for removable media.

Filesystem Utilities-One

 info – The GNU alternative to man
 man – The standard unix documentation system
 chattr – Change file attributes on a Linux second

extended file system
 chgrp – Change the group of a file or directory
 chmod – Change the permissions of a file or directory
 chown – Change the owner of a file or directory
 cd – Change to another directory location
 cp – Copy a file or directory to another location

Filesystem Utilities-Two
 df – Report disk space
 dircmp – Compare contents of files between two directories
 du – Calculate used disk space
 fdupes – Find or remove duplicate files within a directory
 find – Search for files through a directory hierarchy
 fsck – Filesystem check
 ln – Link one file/directory to another
 ls – List directory contents
 lsattr – List file attributes on a Linux second extended file

system
 lsof – list open files

Filesystem Utilities-Three

 mkdir – Make a directory
 mkfifo – Make a named pipe
 mount – Mount a filesystem
 mv – Move or rename a file or directory
 pwd – Print the current working directory
 rm – Delete a file or directory tree
 readlink – Display value of a symbolic link, or display canonical

path for a file
 rmdir – Delete an empty directory
 touch – Create a new file or update its modification time
 tree – Print a depth-indented tree of a given directory
 unlink – System call to remove a file or directory

Text Editors

 GNU Emacs – Freely programmable full-screen text editor and general
computing environment (using built-in Elisp, a simple dialect of the Lisp
programming language)

 Joe – a screen-oriented text editor using a Wordstar-style command set
 Jove – a screen-oriented text editor using an Emacs-style command set
 pico – PIne's message COmposition editor (simple, easy to use screen

editor)
 vi – "Visual" (screen-oriented) text editor (originally ex in screen-

oriented "visual" mode)
 vim – Vi IMproved, portable vi-compatible editor with multiple buffers,

screen splitting, syntax highlighting and a lot of other features not
found in standard ex/vi

 XEmacs – Popular version of emacs that is derived from GNU Emacs

http://en.wikipedia.org/wiki/Vi
http://en.wikipedia.org/wiki/Ex_%28editor%29

Text Processing-One
 awk – A pattern scanning and processing language
 banner – Creates ascii art version of an input string for printing large

banners
 cat – Concatenate files to standard output
 cksum – Print the CRC checksum and bytecount of a file (see also MD5)
 cmp – Compare two files byte for byte
 cut – Remove sections from each line of a file or standard input
 diff – Compare two text files line by line
 egrep – Extended pattern matching (synonym for "grep -E")
 fgrep – Simplified pattern matching (synonym for "grep -F")
 fold – Wrap each input line to fit within the given width
 grep – Print lines matching a pattern
 head – Output the first parts of a file
 iconv – Convert the encoding of the specified files
 join – Join lines of two files on a common field
 less – Improved more-like text pager

Text Processing-Two

 more – Pager
 nroff – Fixed-width (non-typesetter) version of the standard Unix

typesetting system
 patch – Change files based on a patch file
 sed – Stream EDitor
 sort – Sort lines of text files
 split – Split a file into pieces
 tail – Output the tail end of files
 tee – Read from standard input, write to standard output and files
 uudecode – Decodes a binary file that was used for transmission using

electronic mail
 uuencode – Encodes a binary file for transmission using electronic mail
 wc – Word/line/byte count

Archivers and compression
 afio – Compatible superset of cpio with added functionality
 ar – Maintain, modify, and extract from archives. Now largely obsoleted by

tar
 bzip2 – Block-sorting file compressor
 compress – Traditional compressor using the LZW algorithm
 cpio – A traditional archiving tool/format
 gzip – The gzip file compressor
 p7zip – 7zip for unix/linux
 pack, pcat, unpack – included in old versions of ATT Unix. Uses Huffman

coding, obsoleted by compress.
 pax – POSIX archive tool that handles multiple formats.
 tar – Tape ARchiver, concatenates files
 uncompress – Uncompresses files compressed with compress.
 zcat – Prints files to stdout from gzip archives without unpacking them to

separate file(s)

http://en.wikipedia.org/wiki/Cpio

Communication
 ftp, sftp – File transfer protocol, secure FTP
 NFS – Network filesystem
 OpenVPN – virtual private (encrypting) networking software
 Postfix — mail transfer agent
 rsh, SSH, telnet – Remote login
 Samba – SMB and CIFS client and server for UNIX
 Sendmail – popular E-Mail transport software
 talk – Talk to another logged-in user
 uustat – a Basic Networking Utilities (BNU) command that

displays status information about several types of BNU
operations

 uux – Remote command execution over UUCP

http://en.wikipedia.org/wiki/UUCP

Network monitoring and security
 John the Ripper – password cracking software
 Nessus – a comprehensive open-source network vulnerability scanning

program
 Netstat – displays a list of the active network connections the computer
 Nmap – free port scanning software
 SAINT – System Administrator’s Integrated Network Tool – Network

Vulnerability Scanner.
 SATAN – the Security Administrator Tool for Analyzing Networks – a

testing and reporting tool that collects information about networked
hosts

 Snort – an open source network intrusion detection system
 tcpdump – a computer network debugging tool that intercepts and

displays TCP/IP packets being transmitted or received
 Wireshark – a protocol analyzer, or "packet sniffer", similar to tcpdump,

that adds a GUI frontend, and more sorting and filtering options.

Remote Login: SSH Client

 SSH applications are based on a client–server architecture, connecting
an SSH client instance with an SSH server.

 SSH operates as a layered protocol suite comprising three principal
hierarchical components:
 the transport layer provides server authentication, confidentiality, and

integrity;
 the user authentication protocol validates the user to the server;
 the connection protocol multiplexes the encrypted tunnel into multiple

logical communication channels.
 SSH was designed on Unix-like operating systems, as a replacement for

Telnet and for unsecured remote Unix shell protocols, such as the
Berkeley Remote Shell (rsh) and the related rlogin and rexec protocols,
which all use insecure, plaintext transmission of authentication tokens.

Programming Tools

 bash – Bourne Again SHell, (mostly) sh-compatible and csh-compatible,
standard shell on Linux systems and Mac OS X.

 csh – C shell. Written by Bill Joy for BSD systems.
 ksh – Korn shell, standard shell on many proprietary Unix systems,

powerful successor to the Unix Bourne shell (sh), written by David Korn,
 rc – originally written for Plan 9.
 sh – Bourne shell, only shell present on all UNIX and Unix-like systems,

written by Stephen Bourne for Version 7 Unix.
 tcsh – TENEX C shell, standard shell on BSD systems.
 zsh – Z shell.
 awk – Standard Unix pattern scanning and text processing tool.
 perl – Perl scripting language.
 PHP – PHP scripting language.
 Python – Python scripting language.

Compiler-One
 A programming language is an

artificial language that can be used to
control the behavior of a machine,
particularly a computer.

 A compiler is a computer program (or
set of programs) that translates text
written in a computer language (the
source language) into another computer
language (the target language).

 The original sequence is usually called
the source code and the output called
object code.

 Commonly the output has a form suitable
for processing by other programs (e.g., a
linker), but it may be a human-readable
text file.

http://upload.wikimedia.org/wikipedia/commons/2/20/Ideal_compiler.png

Compiler-Two
 as – GNU assembler tool.
 c99 – C programming language.
 cc – C compiler.
 dbx – (System V and BSD) Symbolic debugger.
 f77 – Fortran 77 compiler.
 gcc – GNU Compiler Collection C frontend (also known as GNU C Compiler)
 gdb – GNU symbolic debugger.
 ld – Program linker.
 lex – Lexical scanner generator.
 ltrace – (Linux) Trace dynamic library calls in the address space of the watched

process.
 m4 – Macro language.
 make – Automate builds.
 nm – List symbols from object files.
 size – return the size of the sections of an ELF file.
 strace – (Linux) or truss (Solaris) Trace system calls with their arguments and

signals. Useful debugging tool, but does not trace calls outside the kernel, in the
address space of the process(es) being watched.

The term "user interface" is often used in the context of (personal)
computer systems and electronic devices. Where a network of equipment
or computers are interlinked through an MES (Manufacturing Execution
System)-or Host to display information.
 A human–machine interface (HMI) is typically local to one machine or

piece of equipment, and is the interface method between the human
and the equipment/machine.

 An operator interface is the interface method by which multiple pieces
of equipment that are linked by a host control system are accessed or
controlled.

 The system may expose several user interfaces to serve different kinds
of users. For example, a computerized library database might provide
two user interfaces, one for library patrons (limited set of functions,
optimized for ease of use) and the other for library personnel (wide set
of functions, optimized for efficiency).

Desktops/Graphical User Interfaces

Desktops/Graphical User Interfaces

 CDE – Common Desktop Environment, most commonly found
on proprietary UNIX systems

 Enlightenment – an open source window manager for the X
Window System

 FVWM and its variant.
 GNOME – GNU Network Object Model Environment
 IceWM – ICE Window Manager
 JWM – Joe's Window Manager
 KDE – K Desktop Environment
 XFce – a desktop environment for Unix and other Unix-like

platforms

Package Management
 apt – Front-end for dpkg or rpm
 debconf – Debian package configuration management system
 dpkg – The Debian package manager
 drakconf – Front-end configuration utility for Mandriva Linu
 emerge – A frontend to portage
 pacman – A package manager used primarily by Arch Linux
 portage – The Gentoo Linux package manager
 rpm – Originally the package manager for Red Hat Linux, now used

by several distributions including Mandriva Linux
 Synaptic – GTK+ frontend for the apt package manager. Primarily

used by Ubuntu Linux, Debian Sarge, and other Debian-based
systems; but usable on any system using apt.

 urpmi – Front-end to rpm, used by Mandriva Linux
 YaST - System management utility mainly used by SuSE
 yum - Front-end for rpm, used by Fedora and CentOS

Web Browsers

 Dillo – Extremely light-weight web browser
 ELinks – Enhanced links
 Epiphany – Light-weight GNOME web browser
 Galeon – Light-weight old GNOME web browser
 Konqueror – KDE web browser
 Links – Console based web browser
 lynx – Console based web browser
 Mozilla Application Suite – Graphical cross platform web browser

& email client
 Mozilla Firefox – Extensible Web browser
 Opera – Web browser and e-mail client
 w3m – Console based web browser

Desktop Publishing

 groff – Traditional typesetting system
 LaTeX – Popular TeX macro package for higher-level

typesetting
 lp – Print a file (on a line printer)
 Passepartout – Desktop publishing program
 pr – Convert text files for printing
 Scribus – Desktop publishing program
 TeX – Macro-based typesetting system
 troff – The original and standard Unix typesetting

system

Math Tools

 maxima – Symbol manipulation program.
 Octave – Numerical computing language (mostly

compatible with Matlab) and environment.
 R – Statistical programming language.
 units – Unit conversion program.
 bc – An arbitrary precision calculator language with

syntax similar to the C programming language.
 cal – Displays a calendar
 dc – Reverse-Polish desk calculator which supports

unlimited precision arithmetic
 fortune – Fortune cookie program that prints a

random quote

Kernel Specific Commands
Kernel specific
 date – Print or set the system date and/or time
 dmesg – Print the kernel message buffer
 ipcrm – Remove a message queue, semaphore set or

shared memory id
 ipcs – Provide information on IPC facilities

 uname – Print assorted system statistics

General User Commands
 dd – Convert and copy a file (Disk Dump)
 dirname – Strip non-directory suffixes from a path
 echo – Print to standard output
 env – Show environment variables; run a program

with altered environment variables
 file (or stat) – Determine the type of a file
 nohup – Run a command with immunity to hangups

outputting to non-tty
 sh – The Bourne shell, the standard Unix shell
 uptime – Print how long the system has been running

Processes and tasks management

 anacron – Periodic command scheduler
 at – Single-time command scheduler
 chroot – Change the system root directory for all child processes
 cron – Periodic command scheduler
 crontab – Crontab file editor
 daemonic – Interface to daemon init scripts
 htop – Interactive ncurses-based process viewer that allows

scrolling to see all processes and their full command lines
 kill – Send a signal to process, or terminate a process (by PID)
 killall – Terminate all processes (in GNU/Linux, it's kill by name)

http://en.wikipedia.org/wiki/Process_%28computing%29

Processes and tasks management
 nice – Alter priorities for processes
 pgrep – Find PIDs of processes by name
 pidof – GNU/Linux equivalent of pgrep
 pkill – Send a signal to process, or terminate a process (by

name). Equivalent to Linux killall
 ps – Report process status
 renice – Alter the priorities of an already running process
 sleep – Delay for specified time
 time – Time a command
 timex – Time process shell execution, measure process data and

system activity
 top – Produce a dynamic list of all resident processes
 wait – Wait for the specified process

http://en.wikipedia.org/wiki/Process_%28computing%29

User management and support
 chsh – Change user shell
 finger – Get details about user
 id – Print real/effective UIDs/GIDs
 last – show listing of last logged in users
 lastlog – show last log in information for users
 locale – Get locale specific information
 localedef – Compile locale definitions
 logname – Print user's login name
 man – Manual browser
 mesg – Control write access to your terminal
 passwd – Change user password

User management and support

 su – Start a new process (defaults to shell) as a
different user (defaults to root)

 sudo – execute a command as a different user.
 users – Show who is logged on (only users names)
 w – Show logged-in users and their current tasks
 whatis – command description from whatis database
 whereis – locates the command's binary and manual

pages associated with it
 which (Unix) – locates where a command is executed

from
 who – Show who is logged on (with some details)
 write – Send a message to another user

	Chapter 3 Objectives
	Some History: MULTICS-One
	Some History: MULTICS-Two
	Some History: MULTICS-Three
	Some History: UNIX-One
	Some History: BSD-One
	Some History: BSD-Two
	Some History: BSD-Three
	Some History: MINIX-One
	Some History: MINIX-Two
	Some History: MINIX-Three
	Minix and Linux
	UNIX
	UNIX
	Unix Shell
	GNU-One
	GNU-Two
	Linux-Introduction
	The Linux Kernel
	Kernel-Introduction
	Linux Distributions
	Bash-The Linux Shell
	Linux Filesystem-One
	Linux Filesystem-Two
	Filesystem Utilities-One
	Filesystem Utilities-Two
	Filesystem Utilities-Three
	Text Editors
	Text Processing-One
	Text Processing-Two
	Archivers and compression
	Communication
	Network monitoring and security
	Remote Login: SSH Client
	Programming Tools
	Compiler-One
	Compiler-Two
	Desktops/Graphical User Interfaces
	Desktops/Graphical User Interfaces
	Package Management
	Web Browsers
	Desktop Publishing
	Math Tools
	Kernel Specific Commands
	General User Commands
	Processes and tasks management
	Processes and tasks management
	 User management and support
	 User management and support

