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Why Quantum Computing?

 One of the most important problems in modern hardware 
design is the limiting factor of the interspatial distances in 
the Silicon wafers.  Quantum computers offer us the 
theoretical limit of atomic scale.

 One of the most important network problems is the ability to 
encrypt documents to increase the security of the network.  
Quantum encryption techniques offer us a theoretical 
encryption methodology which is beyond computational 
feasibility.



Review of Fourier Series

 A Fourier series is a sum that is created to represents a 
periodic function as a sum of sine and cosine harmonic waves. 
The frequency of each wave in the sum, or harmonic, is an 
integer multiple of the periodic function’s fundamental 
frequency. 

 Each harmonic’s phase and amplitude can be determined using 
harmonic analysis. A Fourier series may potentially contain an 
infinite number of harmonics. 

 Summing part of but not all the harmonics in a function's 
Fourier series produces an approximation to that function. 



https://en.wikipedia.org/wiki/Fundamental_frequency
https://en.wikipedia.org/wiki/Phase_(waves)


Introduction to Fourier Series

Let x(t) be a periodic signal with period T, i.e.,

Example: the rectangular pulse train
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The Fourier Series

Then, x(t) can be expressed as

where                     is the fundamental frequency
(rad/sec) of the signal and 
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Convergence Criteria
A periodic signal x(t), has a Fourier series if it satisfies 
the following conditions:
1.   x(t) is absolutely integrable over any period, namely 

2.   x(t) has only a finite number of maxima and minima
over any period

3.   x(t) has only a finite number of discontinuities over 
any period
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Trigonometric Fourier Series

By using Euler’s formula, we can rewrite

as

as long as x(t) is real.

This expression is called the trigonometric Fourier series of x(t)
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Parseval’s Theorum

Let x(t) be a periodic signal with period T
The average power P of the signal is defined as

 Expressing the signal as
it is also
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Fourier Transform: One

 We have seen that periodic signals can be represented 
with the Fourier series

 Can aperiodic signals be analyzed in terms of 
frequency components?

 Yes, and the Fourier transform provides the tool for this 
analysis

 The major difference w.r.t. the line spectra of periodic 
signals is that the spectra of aperiodic signals are 
defined for all real values of the frequency variable     
not just for a discrete set of values



Fourier Transform: Two

 Consider

 Since           in general is a complex function, 
by using Euler’s formula
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Inverse Fourier Transform

 Given a signal x(t) with Fourier transform      
, x(t) can be recomputed from           

by applying the inverse Fourier transform
given by

 Transform pair
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Properties of Fourier Transform

( ) ( )x t X ω↔ ( ) ( )y t Y ω↔
 Linearity:

 Left or Right Shift in Time:

 Time Scaling:
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Properties of Fourier Transforms

 Time Reversal:

 Multiplication by a Power of t:

 Multiplication by a Complex Exponential:
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Properties of Fourier Transforms

 Multiplication by a Sinusoid (Modulation):

 Differentiation in the Time Domain:
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Properties of Fourier Transforms

 Integration in the Time Domain:

 Convolution in the Time Domain:

 Multiplication in the Time Domain:

1( ) ( ) (0) ( )
t

x d X X
j

τ τ ω π δ ω
ω−∞

↔ +∫

( ) ( ) ( ) ( )x t y t X Yω ω∗ ↔

( ) ( ) ( ) ( )x t y t X Yω ω↔ ∗



Properties of Fourier Transforms

 Parseval’s Theorem:

 If 

 Duality:
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Mathematical form of the Fourier Transform

 Given a signal x(t), its Fourier transform   is 
defined as

 A signal x(t) is said to have a Fourier transform in the 
ordinary sense if the above integral converges
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Introduction to Differential Calculus

The study of calculus usually begins with the basic 
definition of a derivative. A derivative is obtained through 
the process of differentiation, and the study of all forms of 
differentiation is collectively referred to as differential 
calculus. 
 If we begin with a function and determine its derivative, 
we arrive at a new function called the first derivative. If we 
differentiate the first derivative, we arrive at a new function 
called the second derivative, and so on.



What is a derivative?

The derivative of a function is the slope at a given point.
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Representations of a Derivative
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dx dx

1 1( , )x y

2 2( , )x y

2 1y y−

2 1x x−

2 1

2 1

slope y ydy
dx x x

−
= =

−



Introduction to Integral Calculus

Anti-Derivatives
An anti-derivative of a function f(x) is a new function F(x) such that
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Definite and indefinite Integrals
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Definite Integral as area under a curve
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Acceleration, velocity and displacement

( )

2 2( ) acceleration in meters/second  (m/s )
( ) velocity in meters/second (m/s)
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Acceleration, velocity and displacement #2
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Review of Vector Analysis
Vector analysis is a mathematical tool with which 
electromagnetic (EM) and Quantum concepts are most 

conveniently expressed and best comprehended. 

A quantity is called a scalar if it has only magnitude (e.g.,
mass, temperature, electric potential, population).

A quantity is called a vector if it has both magnitude and
direction (e.g., velocity, force, electric field intensity).

The magnitude of a vector   is a scalar written as A orA
A



Vectors in Cartesian Co-ordinates

A vector,         in Cartesian or rectangular co-ordinates may be 
represented as:
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A

)A,A,A( zyx zzyyxx eAeAeA ++

Where the vector        is 
given by:

V

zyx e4e3e2V ++=



Equipotential Surfaces in Cartesian Co-ordinates

Cartesian coordinates (x,y,z) The ranges of the coordinate variables are 

A vector    in Cartesian coordinates can be written as 
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The intersection of three orthogonal 
infinite planes

(x=const, y= const, and z = const)

defines point P.



Vectors in cylindrical Co-ordinates

Point P and unit vectors in 
the cylindrical coordinate 
system
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Equipotential Surfaces in Cylindrical Co-ordinates

semi-infinite 
plane with its 
edge along 
the z - axis

Constant z, ρ,  φ surfaces



Cartesian Vectors in Cylindrical Co-ordinates
A vector in cylindrical 
co-ordinates:  
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Vectors in Spherical Co-ordinates
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A vector A in spherical coordinates may be 
written as
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Cartesian Vectors in Spherical Co-ordinates 
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Equipotential Surfaces in Spherical Co-ordinates

Constant r , Φ ,  θ surfaces



Exponential and Sinusoidal Functions 



Periodicity/Phase Angle/Interference

Constructive 
Interferences

Destructive Interferences



Phase Velocity



Introducing new variables

At the moment, h is a simple constant
Later on, h will have a dimension and the p and E will 

be physical quantities 
Then



2 different velocities, v and vϕ



Introduction to Quantum Mechanics

 Quantum mechanics is one of the most controversial theories 
of physics. It portends to provide a description of the physical 
properties of closed systems at the atomic scale.

 Quantum mechanics differs from classical physics in that energy, 
momentum, angular momentum, and other quantities of a 
bound system are restricted to discrete values (quantization)

 Quantum objects have characteristics of both particles and 
waves.

 Quantum mechanics sets limits to how accurately the value of a 
physical quantity can be predicted prior to its measurement, 
given a complete set of initial conditions (the uncertainty 
principle). 



Early problems with classical mechanics

Quantum Mechanics was invented to provide a theoretical basis for 
atomic phenomena which would correlate with experimental 
results.
Early experiments on the electronic structure of atoms were 
centered around the light emitted by atoms of hydrogen under 
thermal excitation.
Contrary to the predictions of classical electro-magnetic theory 
these light pulses were very sharp lines.



Atomic Spectroscopy of Hydrogen



Electron Photoelectric Effect
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The Compton Effect (Electron Scattering) 
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Davisson and Germer

d

θ

2d sin θ = k  λ

Diffraction is similarly observed using 
a mono-energetic electron beam

Bragg law is verified assuming λ=h/p



Wave-Particle Aspect of Reality

•Compton Effect (1923).
•Electron Diffraction Davisson and Germer (1925)
•Young's Double Slit Experiment

Wave–particle duality

Wave-particle Equivalence.

In physics and chemistry, wave–particle duality is the concept that all 
matter and energy exhibits both wave-like and particle-like properties. A 
central concept of quantum mechanics, duality, addresses the 
inadequacy of classical concepts like "particle" and "wave" in fully 
describing the behavior of small-scale objects. Various interpretations 
of quantum mechanics attempt to explain this apparent paradox.



Postulates of Quantum Mechanics

Postulate I:  For any possible state of a system, there is a function ψ of the 
coordinates of the parts of the system and time that describes the system.

),,,( tzyxΨ=Ψ
Ψ Is called a wave function. For two particles system, 

),,,,,,( 222111 tzyxzyxΨ=Ψ
The wave function square Ψ2 is proportional to probability. Since Ψ may be complex, we are 
interested in Ψ*Ψ, where Ψ* is the complex conjugate (i -i) of Ψ. The quantity Ψ*Ψdτ is 
proportional to the probability of finding the particles of the system in the volume element,
dv = dxdydz.
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that is the probability of finding the particle in the universe is 1  normalization condition.



Postulate One: Continue
Orthogonal of two wave functions

∫
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Fourier series expansion – sin(nθ) and cos(nθ) orthogonal functions



Postulate One:  Continue

 In 1924 de Broglie shown that a moving particle has a wave character. This idea 
was demonstrated in 1927 by Davisson and Gerner when an electron beam was 
diffracted by a nickel crystal.

 According to the de Broglie relationship, there is a wavelength associate with a 
moving particle which is given by

mv
h

=λ



Postulate Two: Quantum Operators

With every physical observable q there is associated an operator Q, which 
when operating upon the wavefunction associated with a definite value of that 
observable will yield that value times the wavefunction Φ, i.e. QΦ = qΦ.



Quantum Operators: Continue

(1) The operators are linear, which means that
O(Ψ1 + Ψ2) = OΨ1 + OΨ2

 The linear character of the operator is related to the superposition of 
states and waves reinforcing each other in the process

(2) The second property of the operators is that they are Hermitian (the 19th 
century French mathematician Charles Hermite).

 Hermitian matrix is defined as the transpose of the complex conjugate (*) of 
a matrix is equal to itself, i.e. (M*)T = M
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Postulate Three:  Eigenvalues

 The permissible values that a dynamical variable may have are 
those given by OΦ = aΦ, where Φ is the eigenfunction of the QM 
operator (Hermitian) O that corresponds to the observable whose 
permissible real values are a. 

 The is postulate can be stated in the form of an equation as

O        Φ =   a         Φ
operator      wave function        eignevalue wave function



Eigenvalues: Continue

 Eigenvalues of QM operator must be real !
 Example
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Postulate Four: The wave Equation
Postulate IV
 The state function Ψ is given as a solution of

where is the total energy operator, that is the Hamiltonian operator.
 The hamiltonian function is the total energy, T+V, where T is the kinetic energy and 

V is the potential energy. In operator form

Ψ=Ψ EĤ Schrodinger equation

Ĥ
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where is the operator for kinetic energy and      is the operator for potential energy. 
In differential operator form, the time dependent Schrodinger equation is
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Classical Data Representation

 The basic unit in classical data is a binary digit, 
called a bit, that can take on the value 0 or 1.

 In classical computing, we represent a datum by 
a string of bits.

 The letter ‘A’ may be written 0100 0001
 The number 137 can be written      1000 1001



Classical Operations
 All operations in classical 

computing are based on 
logic gates.

 For example, the logical AND 
gate takes in two bits and 
returns 1 if and only if both 
inputs are 1. 

AND
Input 1 Input B Output

0 0 0
0 1 0
1 0 0
1 1 1

OR
Input 1 Input B Output

0 0 0
0 1 1
1 0 1
1 1 1



Classical Algorithm

 We define a Classical Algorithm to be any 
sequence of such classical operations (usually 
to do something useful).

 A classical computer is any device that can 
implement a classical algorithm.



Introduction to Logical Gates

 The building blocks used to create digital circuits are logic 
gates

 There are three elementary logic gates and a range of other 
simple gates

 Each gate has its own logic symbol which allows complex 
functions to be represented by a logic diagram

 The function of each gate can be represented by a truth 
table or using Boolean notation



Classical Logic Gates (One)

The AND gate

The OR gate



Classic Logic Gates (Two)

The NOT gate

The Logic Buffer Gate



Classic Logic Gates (Three)

The NAND gate

The NOR gate



Classic Logic Gates (Four)

The EXCLUSIVE OR gate

The EXCLUSIVE OR gate



Boolean Algebraic Rules

Commutative law Absorption law

Distributive law De Morgan’s law

Associative law Note also
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Introduction to Quantum Bits

 In quantum computing, a qubit or quantum bit is a basic unit of 
quantum information—the quantum version of the classic binary bit 
physically realized with a two-state device. 

 A qubit is a two-state quantum-mechanical system, one of the 
simplest quantum systems displaying the peculiarity of quantum 
mechanics. 

 In a classical system, a bit would have to be in one state or the other. 
However, quantum mechanics allows the qubit to be in a coherent 
superposition of both states simultaneously, a property that is 
fundamental to quantum mechanics. 



Qubits

 A Quantum Bit 
(Qubit) is a two-level 
quantum system.

 We can label the 
states |0> and |1>.

 In principle, this 
could be any two-
level system.

|1>

|0>



Qubits

 Unlike a classical bit, which is definitely in either 
state, the state of a Qubit is in general a mix of |0> 
and |1>.        

 We assume a normalized state:
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Qubits

 For convenience, we will use the matrix 
representation
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Quantum Gate

 A Quantum Logic Gate is an operation that we 
perform on one or more Qubits that yields another 
set of Qubits.

 We can represent them as linear operators in the 
Hilbert space of the system.



Quantum NOT Gate

 As in classical computing, the NOT gate returns a 0 if 
the input is 1 and a 1 if the input is 0.

 The matrix representation is
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Other Quantum Gates

 Other gates include the Hadamard-
Walsh matrix:

 And Phase Flip operation:
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Multiple Qubits

 Any useful classical computer has more than 
one bit.  Likewise, a Quantum Computer will 
consist of multiple qubits.

 A system of n Qubits is called a Quantum 
Register of length n.

 To represent that Qubit 1 has value b1, Qubit 
2 has value b2, etc., we will use the notation:

nnbbb 
2211



Multiple Qubits

 For n Qubits, the vector representing 
the state is a 2n column vector.

 The operations are then 2n x 2n
matrices.

 For n = 2, we use the representations
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Quantum CNOT Gate

 An important Quantum Gate for n = 2 is the 
conditional not gate.

 The conditional not gate flips the second bit if and 
only if the first bit is on.

Input Output
Qubit 1 Qubit 2 Qubit 1 Qubit 2

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0




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Reversibility and No-Cloning

 In Quantum Computing, we use unitary operations 
(U*U = 1).

 This ensures that all of the operations that we 
perform are reversible.

 This fact is important, because there is no way to 
perfectly copy a state in Quantum Computing (No-
Cloning Theorem).



No-Cloning Theorem

 That is, the No-Cloning Theorem says that there is no 
linear operation that copy an arbitrary state to one of 
the basis states:

 We can get around this if we are only interested in 
copying basis vectors, though.

ψψψ →ie



Entanglement

 In Quantum Mechanics, it sometimes occurs that 
a measurement of one particle will effect the state 
of another particle, even though classically there 
is no direct interaction.  (This is a controversial 
interpretation).

 When this happens, the state of the two particles 
is said to be entangled.



Entanglement: Formalism

 More formally, a two-particle state is entangled if 
it cannot be written as a product of two one-
particle states.

 If a state is not entangled, it is decomposable.
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Entanglement: Example

 The state of two spinors is prepared such that the z-
component of the spin is zero.

 If we measure m = +1/2 for one particle, then the 
other particle must have m =-1/2.

 The measurement performed on one particle resulted 
in the collapse of the wavefunction of the other 
particle.



Why Quantum Computing?

 One of the most important problems in modern hardware 
design is the limiting factor of the interspatial distances in 
the Silicon wafers.  Quantum computers offer us the 
theoretical limit of atomic scale.

 One of the most important network problems is the ability to 
encrypt documents to increase the security of the network.  
Quantum encryption techniques offer us a theoretical 
encryption methodology which is beyond computational 
feasibility.



Definitions

 A Quantum Algorithm is any algorithm that requires 
Quantum Mechanics to implement.

 A Quantum Computer is any device that can 
implement a Quantum Algorithm.



Universal Gate Sets

 It would be convenient if there was a small set of 
operations from which all other operations could be 
produced.

 That is, a set of operators {U1,…,Un} such that any 
other operator W could be written W = UiUj…Uk.

 Such a set of operators in the context of computation 
is called a universal gate set.



Classical NAND Gate

 One universal set for Classical Computation consists 
of only the NAND gate which returns 0 only if the two 
inputs are 1.

NAND
Input 1 Input B Output

0 0 1
0 1 1
1 0 1
1 1 0
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Quantum Universal Gate Set

 There are a few universal sets in Quantum 
Computing.

 Two convenient sets:
 CNOT and single Qubit Gates
 CNOT, Hadamard-Walsh, and Phase Flips

 Having such a set could greatly simplify 
implementation and design of Quantum 
Algorithms.



Physical Implementation

 Any physical implementation of a quantum 
computer must have the following properties to be 
practical(DiVincenzo)

• The number of Qubits can be increased
• Qubits can be arbitrarily initialized
• A Universal Gate Set must exist
• Qubits can be easily read
• Decoherence time is relatively small



Decoherence

 As the number of Qubits increases, the influence 
of external environment perturbs the system.

 This causes the states in the computer to change 
in a way that is completely unintended and is 
unpredictable, rendering the computer useless.

 This is called decoherence.



Shor’s Algorithm

 A Quantum Algorithm, due to P. W. Shor (1994) allows for very fast 
factoring of numbers.

 The algorithm uses other algorithms: the Quantum Fourier 
Transform, and Euclid’s Algorithm.

 It also relies on elements of group theory.
 Because of the unpredictability of Quantum Mechanics, it only gives 

the correct answer to within a certain probability.
 Multiple runs can be performed to increase the probability that the 

answer is correct.  This increases the complexity to ( )nn 2
3 log
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