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ASCENTRUST.c
Introduction: Part One

We have all implicitly dealt with sets

= Integers (£), rationals (@), naturals (¥), reals (#),
etc.

We will develop more fully
= The definitions of sets
= The properties of sets
= The operations on sets

Definition: A set is an unordered collection of (unigue)
objects

Sets are fundamental discrete structures and for the
basis of more complex discrete structures like graphs
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Introduction: Part Two

= The objects in a set are called elements or
members of a set. A set is said to contain
Its elements

= Notation, for a set A:
= X € A: X IS an element of A
= X ¢ A: X Is not an element of A
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Properties: Part One

= Two sets, A and B, are equal Is they
contain the same elements. We write A=B.

= Example:

= {2,3,5,7}={3,2,7,5}, because a set Is
unordered

= Also, {2,3,5,7}={2,2,3,5,3,7} because a set
contains unique elements

= However, {2,3,5,7} #{2,3}
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Properties: Part Two

= A multi-set is a set where you specify the
number of occurrences of each element:
{m;-a;,m,-a,,...,m:-a} is a set where
= M, OCCurs a, times
= M, OCCUrs a, times

= M, occurs a, times

= In Databases, we distinguish
= A set: elements cannot be repeated
= A bag: elements can be repeated
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Terminology

= The set-builder notation
O={ x| (xe2) A (x=2k) for some keZ}
reads: O is the set that contains all x such that x
IS an integer and x is even

= A set is defined in intension when you give its
set-builder notation
O={ x| (xe2) A (0<x<8) A (x=2k) for some k € Z }
= A set is defined in extension when you
enumerate all the elements:
0={0,2,4,6,8}
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Venn Diagram:

= A set can be represented graphically using a
Venn Diagram
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Properties and Notation: Part One

= A set that has no elements is called the empty
set or null set and is denoted J

= A set that has one element is called a singleton
set.
= For example: {a}, with brackets, is a singleton set
= a, without brackets, is an element of the set {a}

= Note the subtlety in @ = {&}
= The left-hand side is the empty set

= The right hand-side is a singleton set, and a set
containing a set
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Properties and Notation: Part Two

= For any set S
s Jc Sand
ngS

= A IS said to be a subset of B, and we write
A c B, If and only if every element of A is
also an element of B

= That is, we have the equivalence:
AcB ©VXx(XeA=xeB)
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Properties and Notation: Part Three

. A set A that Is a subset of a set B is called
a proper subset if A = B.

. That iIs there Is an element xeB such that
XeA

. We write: A c B,

If there are exactly n distinct elements in a set S,
with n a nonnegative integer, we say that:

S is a finite set, and

The cardinality of S is n. Notation: |S| = n.
A set that is not finite is said to be infinite

11
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Equivalence: Part One

= To show that a set is
= a subset of,
= proper subset of, or
= equal to another set.

= To prove that A is a subset of B, use the equivalence
discussed earlier Ac B < VXx(XxeA = xeB)

= To prove that A c B it is enough to show that for an arbitrary
(nonspecific) element x, xeA implies that x is also in B.

m To prove that A is a proper subset of B, you must prove

= Ais asubset of B and
= IX (XeB) A (XgA)
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Equivalence: Part Two

= To show that two sets are equal, it is sufficient
to show independently (much like a
biconditional) that

-AgBand
s BcCcA

= Logically speaking, you must show the following
guantified statements:

(VX (xeA = xeB)) A (VX (XeB = xeA))

13
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Power Set

The power set of a set S, denoted P(S), is the set of all
subsets of S.

Examples

= Let A={a,b,c},
P(A)={<.{a},{b}{c}.{a,b}.{b,c}.{a,c}.{a,b,c}}

= Let A={{a,b},c}, P(A)={J {{a,b}}.{c}.{{a,b},c}}

Note: the empty set & and the set itself are always
elements of the power set.

The power set is a fundamental combinatorial object
useful when considering all possible combinations of
elements of a set

Let S be a set such that |S|=n, then
[P(S)| = 2"

14
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Tuples

x Sometimes we need to consider ordered
collections of objects

= The ordered n-tuple (a,,a,,...,a,) Is the
ordered collection with the element a;, being
the I-th element for 1=1,2,...,n

= A 2-tuple (n=2) is called an ordered pair

15
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Cartesian Product

Let A and B be two sets. The Cartesian product of A
and B, denoted AxB, is the set of all ordered pairs (a,b)
where acA and beB

AxB = { (a,b) | (acA) A (b € B) }

The Cartesian product is also known as the cross
product

A subset of a Cartesian product, R — AxB is called a
relation.

Note: AxB = BxA unless A= or B=J or A=B
Cartesian Products can be generalized for any n-tuple

The Cartesian product of n sets, A;,A,, ..., A,, denoted
A xA%... XA, is

A xAyx... xA,={ (a1,a,,...,8,) | 8 € A fori=1,2,...,n}

16
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Notation with Quantifiers

= Whenever we wrote 3xP(x) or VxP(x), we specified the
universe of discourse using explicit English language

= Now we can simplify things using set notation!
= Example

= V X e R (x>>0)
« 3 X e Z(X?=1)
= Also mixing quantifiers:
Va,b,c € 3 X e C(ax?+bx+c=0)

17
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Set Operations

= Arithmetic operators (+,-, x ,=) and set operators exist
and act on two sets to give us new sets

- Union
Intersection
- Set difference
- Set complement
- Generalized union
- Generalized intersection

18
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Set Operators: Union

= The union of two sets A and B is the set that contains all
elements in A, B, r both. We write:

ALB={x|XeAv(xeB)}

U

19
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Set Operators: Intersection

s The intersection of two sets A and B is the set that
contains all elements that are element of both A and B.
We write:

ANnB={x](xeA A(XeB)}
U X

20
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Disjoint Sets

= Two sets are said to be disjoint If their
Intersection is the empty set: AnB =

U

21
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Set Difference

= The difference of two sets A and B, denoted A\B or A-B,
IS the set containing those elements that are in A but
not in B

A-B={x|(x cA) A (x¢B)}

U

22
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Set Complement

= Definition: The complement of a set A, denoted K
consists of all elements not in A. That is the difference
of the universal set and U: U\A

A=A={x|xegA}

U

23
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Generalized Union

= The union of a collection of sets Is the set
that contains those elements that are
members of at least one set In the
collection

A=A UAU..UA
=

1
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Generalized Intersection

s [ he intersection of a collection of sets Is the
set that contains those elements that are
members of every set in the collection

MA=ANA A.AA
=1
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Chapter Two:
Introduction to Functions

Developed for Azera Global
By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.
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Relations and Functions

Relation
A relation is any set of ordered pairs.

A special kind of relation, called a function, is very important
In mathematics and its applications.

Function

A function is a relation in which, for each value of the first
component of the ordered pairs, there is exactly one value
of the second component.

In a relation, the set of all values of the independent variable
(x) Is the domain.

The set of all values of the dependent variable (y) is the
range

27
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Introduction to Functions

F is a function. G is not a function.

28
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Tables and Graphs

y
®
X y
—2 6
0 0 o
@) . X
2 | —6
Table of the o
function, F

Graph of the function, F
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Function Notation

When a function f is defined with a rule or an equation using x and y for the
independent and dependent variables, we say “y is a function of x” to
emphasize that y depends on x. We use the notation

y =1 (),
called function notation, to express this and read f (x), as “f of x”.

The letter f stands for function. For example, if y = 5x — 2, we can name

this function f and write
f(x) =5x - 2.

Note that f (x) is just another name for the dependent variable y.

30
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Linear Function

A function that can be defined by

f(x) =ax + b,

for real numbers a and b is a linear function.

The value of a is the slope of m of the graph of the
function. Before we can draw a graph of our
function we must look at the co-ordinate plane or
the Cartesian Co-ordinate plane.

31
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The Co-ordinate Plane

A function that can be defined by ~ f(x) =ax+b,

The plane of the grid is y
called the coordinate plane.

The horizontal number line
is called the x-axis .

The vertical number line
is called the _y- .

axis
The point of intersection of
the two axes is called the
origin

Y
X

32
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Graphing a Function

An ordered pair of real numbers, called coordinates of a point, locates a
point in the coordinate plane.

Each ordered pair corresponds to EXACTLY one point in the
coordinate plane.

The point in the coordinate plane is called the graph of the ordered pair.

Locating a point on the coordinate plane is called graphing the ordered pair.

33
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Chapter Three:
Logarithmic Functions

Developed for Azera Global
By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.
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Definition: Logarithmic Function

Forx>0andb>0,b=1,

y=log,xis equivalentto & = x.

The function f (x) = log, x is the logarithmic
function with base b.

Exponent | Exponent |

Logarithmic form:y = log,x  Exponential Form: bY = x.

i Base ﬁase

35
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Properties of Logarithms

Forx >0and b #1,

o log, 0¥ = x The logarithm with base b of
b raised to a power equals that power.
0 b9 x = x b raised to the logarithm with

base b of a number equals that number.

General Properties: Common Logarithms

1.log,1=0 l.log1=0
2.log, b6=1 2.log10=1
3.log, &¥=0 3. log 10 = x

4. blogpx = x 4,109 x = x

36
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Properties of Natural Logarithms

General Properties Natural Logarithms
1.log,1=0 1.In1=0
2.log, 6=1 2.Ine=1
3.log, &¥=0 3. Iner=x
4. plo9px = x 4. enx=x

The function y=e* has an inverse called the Natural
Logarithmic Function.

Y=In x

37



ASCENTRUST.c

Properties of Natural Logarithms

y=e* and y=In x are inverses of each other!

38
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Characteristics of f(x) = log,x

The x-intercept is 1. There is no y-intercept.
The y-axis is a vertical asymptote. (x = 0)

If 0 < b < 1, the function is decreasing. If b > 1, the
function is increasing.

The graph is smooth and continuous. It has no sharp
corners or edges.

. b b -
I ——

Y

o)

3 3 _—1
A f (x) = log, X ” il f(x) = log, x
O<b<1 . N b>1
. 3 14 - b B b ~
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Domain of Logarithmic Functions

Because the logarithmic function is the inverse
of the exponential function, its domain and
range are the reversed. f(x)=log,(x+c)

The domainis { x| x> 0 } and the range will
be all real numbers.

For variations of the basic graph, say
the domain will consist of all x for
which x+ ¢ > 0.

40
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Chapter Four:
Trigonometry

Developed for Azera Global
By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.
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Outline

Slide 47-Right Triangle Trigonometry

Slide 48-Right Triangle Trigonometry

Slide 49-Trigonometric Ratios

Slide 50-Reciprocal Functions

Slide 51-Important Trigonometric ldentities
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Right Triangle Trigonometry

Trigonometry is based upon ratios of the sides of right triangles.

The six trigonometric functions of a right triangle, with an acute
angle 2 are defined by ratios of two sides of the triangle.

WD fopp

0 [
ad)

The sides of the right triangle are:
the side opposite the acute angle 2
the side adjacent to the acute angle 2

and the hypotenuse of the right triangle.

43
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Right Triangle Trigonometry

The hypotenuse is the longest side and is always opposite
the right angle.

The opposite and adjacent sides refer to another angle,
other than the 90°.

hypotenuse hypotenuse

N ~

A
adjacent opposite

opposite
adjacent

44
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Trigonometric Ratios

hyp
opp

adj
The trigonometric functions are:

sine, cosine, tangent, cotangent, secant, and cosecant.

sin 7 = 2P cos 7 = 2dl tan 7 = 9PP
hyp hyp adj
csc 7 = WP sec 7 = P cot 7 = ad]

Opp ad] Opp

45
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i Reciprocal Functions

sin &= 1/csc @ csc d=1/sin @
cos 8= 1/sec & sec &= 1/cos @
tan 8= 1/cot & cot &= 1/tan &

46
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Important Trigonometric ldentities

Reciprocal Identities

sin = 1/csc &
cot 9= 1/tan @

Co function Identities

tan 8= 1/cot @
csc @=1/sin @

cos 8= 1/sec O
sec = 1/cos @

sin 8= cos(90@- 9)
sin 8= cos (n/2— 0)
tan €= cot(90z- &)
tan 6= cot (n/2— 0)
sec &= csc(90e- 0)
sec #=csc (n/2— 0)

cos &= sin(90a- 4)
cos #=sin (w/2— 0)
cot = tan(90@- A)
cot #=tan (n/2— 0)
csc 8= sec(90z- &)
csc = sec (n/2— 0)

Quotient Identities
tan @=sin @/cos @ cot & =cos @/sin 0

Pythagorean ldentities

sinf@+cos?2@=1 tan?2 &+ 1= sec2d cot2@+1=csc?éd
47
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Introduction to Vectors

Developed for Azera Global
By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.
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Outline

Slide 54-Definition

Slide 55-Unit Vector: Part One

Slide 56-Unit Vector: Part Two

Slide 57-Coordinate Systems

Slide 58-Polar Coordinate Systems

Slide 59-Polar to Cartesian Coordinates
Slide 60-Vector Addition

Slide 61-Vector Multiplication: Part One
Slide 62-Vector Multiplication: Part Two
Slide 63-Vector Multiplication: Part Three
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Definition

Vector analysis is a mathematical tool with which
electromagnetic (EM) concepts are most conveniently
expressed and best comprehended.

A quantity is called a scalar if it has only magnitude
(e.g., mass, temperature, electric potential,
population).

A quantity is called a vector if it has both magnitude
and direction (e.g., velocity, force, electric field
iIntensity).

The magnitude of a vector A is a scalar written as A
or ‘K‘

50
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Unit Vector: Part One

A unit vector e, along |A| is defined as a vector
whose magnitude is unity (that is,1) and its
direction is along

A (‘EA‘ =1)

QZW:

> | >

which completely specifies A in terms of A and its

direction €,

o1
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Unit Vector: Part Two

A unit vector e, along L‘AA Is defined as a vector
whose magnitude is unity (that is,1) and its
direction is along

CAEEY Thus: A =Ae,

| >

>l
> | >

which completely specifies A in terms of A and its
direction €,

A vector A in Cartesian (or rectangular) coordinates
may be represented as

(ALA,A,) Where: Ae +Ae, +AgE,

where Ay, A, and A; are called the components of A
In_the X, y, and z directions, respectively;g, e, and

€, are unit vectors in the X, y and z directions,
respectively.

52



Coordinate Systems

Common coordinate systems are:

= Cartesian
= Polar

sAlso called rectangular coordinate
system

mXx- and )~ axes intersect at the
origin
=Points are labeled (x,))

ASCENTRUST.c

10
o(x, y)
O+ 5
@
(=3, 4) P-(B, 3)
| |
O 5 10

53
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Polar Coordinate System

Origin and reference line )
are noted

=Point is distance r from (%, )
the origin in the direction
of angle &, ccw from r
reference line

= The reference line is
often the x-axis. 0

=Points are labeled (7,6) O

54
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Polar to Cartesian Coordinates

Based on forming a right
triangle from rand 4

X=rcos 0 Sin9=%
y=rsin @ r 5
. _ X
If the Cartesian cosf =
coordinates are known:
tand = = ~ X
X

=X +y°

55
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Vector Addition, Rules

The three basic laws of algebra obeyed by any given
vector

A, B, and C, are summarized as follows:

Commutative A+B=B+A KA = Ak
Associative A+(B+C)=(A+B)+C K>IA) = (KDA
Distributive k(A + B) = kA +kB

where k and | are scalars

56



ASCENTRUST.c

Vector Multiplication: Part One

When two vectors A and B are multiplied, the result is
either a scalar or a vector depending on how they are
multiplied. The two types of vector multiplication:

1. Scalar (or dot) product: A.B

2.Vector (or cross) product: AxB

The dot product of the two vectors 5 and B Is defined
geometrically as the product of the magnitude of g and
The projection of A Onto g (or vice versa):

A-B = ABcosH,,

where 0 IS the smaller angle between A and g
AB

o7
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Vector Multiplication: Part Two

The cross product of two vectors A and B is defined as

A xB = ABsinf,.€,

where e _ is a unit vector normal to the plane containing A
and B . The direction of e, Is determined using the right-
hand rule or the right-handed screw rule.

Direction of €,
and aA « B using
(a) right-hand
rule,
® (b) right-handed
screw rule

> A

58



ASCENTRUST.c

Vector Multiplication: Part Three

Note that the cross product has the following basic

properties:
() It is not commutative: AxB +BxA
It Is anticommutative: AxB - _-BxA

(i) It is not associative: A x(B xC) = (AxB)xC

(i) It is distributive: Ax(B+C)=AxB+AxC

A (sind =0)
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Chapter Five
Differential Calculus

Developed for Azera Global
By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.

60



ASCENTRUST.c

Differential Calculus

The two basic forms of calculus are
m differential calculus and
» /ntegral calculus.

This lecture will be devoted to the former.
Integral Calculus will be presented In
another lecture.

61
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Differentiation and the Derivative

=The study of calculus begins with the basic definition of
a derivative. A derivative is obtained through the process
of differentiation, and the study of all forms of
differentiation is collectively referred to as differential
calculus.

=If we begin with a function and determine its derivative,
we arrive at a new function called the first derivative.

alf we differentiate the first derivative, we arrive at a new
function called the second derivative, and so on.

62
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Definition of Derivative

The derivative of a function is the slope at a
Y | given point.

y=f(x) |

Ay

__________

63
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i Various Symbols for the Derivative

Y oor frx or I
dx dx
Definition: &Y — jim 2Y

d)( Ax—0 AX

64



Piecewise Linear Segment

(%, Y1)

ASCENTRUST.c
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i Example of a Simple Derivative

y =X
Y+ AY = X + 2XAX + (AX)?
AY = 2XAX + (AX)*

= [im —= Ay = 2X
dx Ax—0 AX

66
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i Chain Rule of Differentiation

y=fu) U=u(x)

ﬂ:df(u) du _ ,(u)d_u
dx du dx dx
df (u
where T'(u) = C

du

67
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Part One

f(x) f'(x) Derivative Number
af (x) af '(x) D-1
u(x) +v(x) u'(x) +v'(x) D-2
f(u) ) du _ df (u) du D-3
dx du dx
a 0 D-4
X" (n#0) nx"t D-5
Un (n * O) nun_l d_u D_6
dx
" T
dx  dx D
u TR os
v dx  dx )
V2
e , du
e — ]
X D-9

68
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Table of Derivatives:Part Two

a (In a)a“d—i D-10
Inu ld_“ D-11
u dx i
log.u 1du
9, (Ioga e)a& D-12
sinu [duj
cosu| — D-13
dx
cosu . du
—sinu— D-14
dx
tanu 2, du
sec’u— D-15
dx
sin"tu 1 du (—£<sin‘lu <£j D-16
V1-u? dx 2 2
-1 _
cos ™ u -1 du (OSCOS‘lu Sﬂ') D-17
V1-u? dX
tan'u 1 du T ctantu<Z D-18
1+u? dx 2 2
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Higher-Order Derivatives

y = f(x)

70
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Applications: Maxima and Minima

s 1. Determine the derivative.

s 2. Set the derivative to O and solve for
values that satisfy the equation.
s 3. Determine the second derivative.

= (a) If second derivative > 0, point is a
minimume.

= (b) If second derivative < O, point is a
maximum.

71
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iDispIacement, Velocity, Acceleration

sDisplacement y
=\Velocity V= ﬂ
dt
2
sAcceleration a= av_d'y
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Partial Derivatives and Gradients

Developed for Azera Global
By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.
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Definition: Partial Derivative

e the partial derivative of f(x,y) with respect to x and y are

o _im f(X+Ax,y)—f(x,y)=(§) - f

OX  Ax—0 AX ox”’

of _ iy T(X,y+4y)- f(x,y)=(§)x=f
Ay—0 Ay 6y y

® second partial derivatives of two-variable function f(x,y)

o of  o°f o of . O*f

6X (6X) axz XX ay (ay) ayz yy
6(6f)_62f_f i(ﬂ)_azf_
ox oy’ oxoy ¥ oy ox’ eyox
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Total Differential

The total differential and total derivative

X—=>X+Ax and y—> y+Ay= f > f + Af
Af = T (X+AX, y+Ay)— f(X,y)
= f(X+AX,y+Ay)— T (X, y+Ay)+ (X, y+Ay)— f(X,y)
=[f(x+Ax,y+AAy)— f(x,y+Ay)]AX+[f(x,y+Ay)— f(x,y)]Ay
X Ay
as Ax —> 0 and Ay - 0, the total differential df is
of of

df = —dx+—dy
OX oy

for n-variable function f(x;,X,,...X;)

df =idxl+idx2+ .............. +idxn

OX, oX, OX

n

75
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Exact and Inexact Differentials

If a function can be obtained by directly integrating its
total differential, the differential of function f is called
exact differential, whereas those that do not are inexact

differential.

(1) df = xdy+(y+1)dx= f(x,y)=xy+Xx  exact differential

(2) df = xdy + 3ydx
= function f(Xx,y) doesnot exist = inexact differential

Properties of exact differentials:

A(X, y)dx + B(x, y)dy =df = g—i= A(X,Yy) and %= B(X,Y)

_ o°'f oA o°f _0B _ 8A(x.y) _8B(x.y)
OyoxX oy Oxoy OX oy OX
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Properties: Part One

OX OX
= x(y,2) = dx = (2. dy+ (2. d
= Xy, D)= b= (), 0y + (51), 02
y=y(x,2) = dy = (), dx+ (%), dz
OX Oz

z=12(X,y)=>dz= (Z—i)ydx+(%)xdy

ox, ,oy ox, ,0y OX
dX = (=), (=), dx+[(=), (=) + (=), Jdz
GG+ GG+ D))
if z is a constant=dz=0 If x is a constant=dx=0
(a_x) —(ﬂ)‘1 reciprocity relation (ay) (az) (ax) = -1 cyclic relation
oy’" ox’ oz " ox ey’

7
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Properties: Part Two

The chain rule
for f = f(x,y) and x=x(u), y=y(u)
of of df of dx af dy

df = ax+ g
ox oy YT du axdu ' dy du

for many variables f(x,,X,,....,X,) and X, = X;(u)
of dx; of dx, 6f dx, of dx,

Z 2 e, +——
du 7 OX. du 8x1 du ax du ox, du

Partial Differentiation of Integrals
oF (x,1) — f(x.1)

O°F (x,t) aZF(x t) aF(x t), 8 OF(x,t), of(x,t)
~ 7 atox oxdt :at[ Fal o
0 OF(x,t)., 0 aF(x t) af(x 0.,

:Iatl - ]dt_ja—xf(x,t)dt j

F(x,t):j f(x,t)dt =
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i Directional Derivatives: Part One

= Recall that, if z = f(x, y), then the partial
derivatives 7 and /, are defined as:

f (Xo + h’ yo)_ f (Xo’ yo)
h

fx (Xo’ yo) — Ihl_r)rg

f (X, Yo +h)=T(X5, )
h

fy (Xo’ YO) — Ihi_r)rg
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Directional Derivatives: Part Two

= Suppose that we now wish to find the rate
of change of zat (x;,, J;) In the direction of
an arbitrary unit vector u = <a, b>.

= To do this, we consider
the surface S with
equation z = f(x, y) [the
graph of 7] and we let
Zy = X0, Jo)-

= Then, the point Ax,,
Vor Zp) lies on S.
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Directional Derivatives: Part Three

= The vertical plane that i
passes through P
in the direction of u
intersects Sin
a curve C.

= The slope of the
tangent line 7to C
at the point Pis the
rate of change of z
in the direction
of u.

P(Is yOsIU}
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Now, let:

A(x, ¥, 2) be another point
on C.

P’, Q’be the projections of
P, Q on the xy-plane.

Then the vector P'Q" is
parallel to U.

So: P'Q'=hu

= (ha, hb)
For some scaler A.
Therefore:

X —X, = ha
Y Y, = hb

ASCENIRUST.

Directional Derivatives: Part Four
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Directional Derivatives: Part Five

From: x-x, =ha

Y=Y, =hb
Then:
Az 7-1,
h h
f (%, +ha,y, +hb)—f(x,Y,)
h

In the limit as /# — 0, we obtain
the rate of change of zin the
direction of U.

This is called the directional
derivative of f in the direction of

U.
D, f(X,Y,) )
=lim f (Xo + ha’ yo + hb)_ f (Xo’ yo)

h—0 h
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Directional Derivatives: Part Six

If we define a function g of the single
variable /1 by

D, f(x,y)=f,(x;y)a+f, (x,y)b
If we define a function g of the single variable / by:

g(h) = f (x, +ha, y, + hb)

then, by the definition of a derivative, we have the following
eqguation. g'(0)

g(h)-g(0)

= |im
h—0

—lim f(xo +ha, Yo+ hb)_ f(xm yo)

h—0 h

= Du f (Xo’ yo)
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Directional Derivatives: Part Seven

}-’ A
Suppose the unit vector u
makes an angle 6 with
the positive x-axis, as
shown. Then, we can
write u = <cos @, sin &
and the directional
derivative becomes:

D, f(x,y) = f,(x,y)cos@+ f (X, y)siné
0

ey

Notice that the directional derivative can be written as the dot
product of two vectors:

D, f(x,y)=f,(x,y)a+ f,(x,y)b
= < 1:x(X’ y)! f (X, y)> '<a’ b>
=(f,(xy), f,(x,y))-u
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The Gradient: Part One

The first vector in that dot product occurs not only in
computing directional derivatives but in many other contexts
as well. This directional derivative is called the Gradient of £
The Gradient of fis written as: 'V £ which is read as “del 7°
If 7is a function of two variables x and y then the gradient of
f(x,y) is defined as:

VI, y) =(H (), £, y)

of . of
=—I+—]
OX  OX
We can rewrite the expression for the directional derivative
as: D, f(x,y)=Vf(x,y)-u

This expresses the directional derivative in the direction of u
as the scalar projection of the gradient vector onto u.
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The Gradient: Part Two

For functions of three variables, we can define directional
derivatives in a similar manner,

The directional derivative of fat (x,, J5, Z) In the direction of
a unit vector u = <g, b, ¢ Is:

D, f (X, Yy,2,)
_lim f(x,+ha,y,+hb,z,+hc)—-f(x,, Y, 2,)
h—0 h

Using vector notation we can rewrite the directional derivative

as: D, f (x,) = ng f (X, +hu)—T(x,)

where:
s Xo = <Xy, Vo Zy> If 1 =3
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The Gradient: Part Three

For a function fof three variables, the gradient vector,
denoted by \/f or grad 7, is:

VE(X,Y,2)
=(f,(xy,2), f,(x,y,2,), f,(X,y,2))
And is written as:  Vf =(f f,, f,)

of . of . of
=—Ii+—]J+—k
ox oy oz

The directional derivative can be rewritten as:
D, f(X,y,2)=Vf(X,Yy,2)-u
The maximum value of the directional derivative D,AX)

Is: | Vf (X) | and it occurs when u has the same direction as the
gradient vector VT (X)
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Tangent Plane

Suppose Sis a surface with equation Ax, y, 2) that is, it is a
level surface of a function F of three variables.

Then, let A x,, Vs, Z,) be a point on S.

Then, let C be any curve that lies on the surface S and passes
through the point ~.

[ |

The curve Cis described by a
continuous vector function

r()) = <x(9, (9, AD>
The gradient vector at P VF(X,,Y,,2,)

VI_(1(-X(}9 }?{'}H :'[]')

tangent plane

is perpendicular to the tangent /-

vector r () and to any curve C 5

on S that passes through ~. - _.
Thus the direction of the ’;,.._/ OS s

normal line is given by the ¢ /
gradient vector. vF(x,,y,,z,) X .~ S E———
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Summary of Gradient

We now summarize the ways in which the gradient vector is
significant.

For a function 7of three variables and a point A(x;, J,, Z)
in its domain we know that the gradient vector v+ (Xq» Yor Zo)
gives the direction of fastest increase of 1.

On the other hand, we know
that VT (X,,Y,,Z,) is orthogonal
to the level surface Sof 7
through ~.

So, it seems reasonable that, if
we move in the perpendicular
direction, we get the maximum
Increase.

VF (Xo05 Yo-Z0)

tangent plane

90



Chapter Six: ASCENTRUST.c
Integral Calculus

Developed for Azera Global
By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.
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Integral Calculus

= The basic concepts of differential calculus
were covered in the preceding
presentation. This presentation will be
devoted to /ntegral calculus, which is the
other broad area of calculus.
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Anti-Derivatives

An anti-derivative of a function A x) is a new function
A x) such that
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i Indefinite and Definite Integrals

Indefinite jf(X)dX

Definite j XXZ f ( x)dx
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Definite Integral/ Area Under the Curve

Approximate Area = >y, AX
k

b X

Exact Area as Definite Integral

j ydx = lim ZykAx

AX—>dX
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Definite Integral with Variable Upper Limit

jax ydx

More “proper” form with “dummy” variable

_[axy(u)du
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Guidelines

If yis a non-zero constant, integral is either
Increasing or decreasing linearly.

If segment is triangular, integral is increasing or
decreasing as a parabola.

If =0, integral remains at previous level.

Integral moves up or down from previous level,
l.e., no sudden jumps.

Beginning and end points are good reference
levels.
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i Tabulation of Integrals

F(x) = j f (x)dx

| :j:f(x)dx

| =F(x)]’ =F(b)-F(a)
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Common Integrals: Part One

f(x) F(x) :J' f (x)dx Integral Number
af (x) aF(x) -1
u(x) +v(x) ju(x)dx+ jv(x)dx -2
a ax -3
" (n=-1) X" -4
n+1
e™ e I-5
a
: 1-6
X In x -
sin ax —gcosax -7
1.
cos ax —sinax 1-8
a
.2 =X ——sin 2ax 1-9
sin® ax 2" 4a
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Common Integrals: Part Two

1 1 .
§x+—sm2ax

cos® ax 12 1-10
i L sinax Xcosax 1-11
Xsin ax 22 a -
1 X .
XCOS ax — Cosax+—sinax 1-12
a a
sin ax cos ax 1.,
—SINn" aX 1-13
2a
sin ax cos bx cos(a—b)x cos(a+b)x 14
for a® = b’ 2(a—b) 2(a+b) ]
xe® e
—(ax-1) I-15
a
Inx x(Inx-1
( ) 1-16
1 1
1y 2 1-17
ax® +b T " [X\EJ
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Displacement, Velocity, Acceleration

a = a(t) = acceleration in meters/second” (m/s*)
v =V(t) = velocity in meters/second (m/s)

y = y(t) = displacement in meters (m)

Y _a) dv_( jdt— adt [dv=[at)dt v= Jatydt+c,

dt
j dv =V [—yj dt = v(t)dt

H_vey y=[vdd-c,

101



ASCENTRUST.c

Chapter Seven:
Complex Variables

Developed for the Azera Group
By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.
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Complex Algebra: Part One

Functions of a complex variable provide some powerful and
widely useful tools in Engineering and physics.

e Some important physical quantities are complex variables (the
wave-function V)

e Evaluating definite integrals.

e Obtaining asymptotic solutions of differentials equations.

e Integral transforms

e Many Physical quantities that were originally real become complex
as simple theory is made more general. The energy E, — E. +ilC
( 1/T — the finite life time).

A complex number z = (x,y) = x + Iy, Where. 1 =+/-1

Complex numbers first arose from the solution of quadratic
equations of the type:

X2+1=0
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Complex Algebra: Part Two

Although both parts of the complex number are real the
ordering of two real numbers (X,y) is significant,

= X: the real part, labeled by Re(z);
= Yy: the imaginary part, labeled by Im(z)

The two representations: 5

(1) Cartesian: x+iy ‘

(2) polar representation:

z=r(cos 0 + i sin®) or
z=r-e"

r — the modulus of z 9

0- the argument of z

R o e
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Complex Algebra: Part Three

The relation between Cartesian and polar representation:
1/2
r =|z| z(x2 —|—y2)
€ =tan" (y/x)
The choice of polar representation or Cartesian
representation is a matter of convenience. Addition

and subtraction of complex variables are easier in the
Cartesian representation.

Multiplication, division, powers, roots are easier to
handle in polar form,
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Complex Algebra: Part Four

Using Cartesian Co-ordinates:
,*7,= (Xl T Xz) + i(Yl T Y2)
2,2, = (XX, = V1Y2) +104Y; + X, Y,)

Using polar co-ordinates:
2122 — rlrzel(gl_l_QZ)
21125 =(r /1, )ei(el_QZ)

N 4

7 :rneln
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Complex Algebra: Part Five

Using the polar form,
|z122] = |21 z2]
arg(z,z,) =arg(z,) +arg(z,)

From z, complex functions f(z) may be constructed. They can be
written  f(z) = u(x,y) + iv(x,y) in which v and u are real functions.

2 ) 2\ .
For example if f(z)=z , We have f(2)=x"-y* Jrizxy

The relationship between z and f(z) is best pictured as a
mapping operation, we address it in detalil later.
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Function: Mapping operation

/1/0 o//\j\

v

" u

The function w(x,y)=u(X,y)+iv(X,y) maps points in the xy plane into points
in the uv plane.

Since e'’ =cos@+ising
e’ =(cos@+isinH)"

We get a not so obvious formula

cosn@d+isinnd = (cos@ +isinH)"
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Complex Conjugation

Replacing i by —i, which is denoted by (*),
*

Z =X—1y
We then have
. < /2
777 =x? +y?=r? \z\:(zz )]/
Note: 7 _pel? rei(6?+2n7z)

ASCENTRUST.c

In z is a multi-valued function. We usually set n=0 and limit the phase to an
interval of length of 2n. The value of Inz with n=0 is called the principal value of

Inz.

Inz=Inr+i6 Inz=Inr+i(@+2n7)
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Another possibility

|sin x|,| cos x |<1for a real x;
however, possibly |sinz|,|cosz|>1and even — o

Using the identities :

€ .
COSZ = > , SINZ =

21
toshow (a) sin(x+1y)=sinxcosh y+icosxsinhy
cos(x +1y) =cos xcosh y —isin xsinh y
(b) |sinz |*=sin® x+sinh® y
|cosz [°=cos® x +sinh’ y
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Cauchy — Riemann: Part One

Having established complex functions, we now proceed to
differentiate them. The derivative of f(z), like that of a real function, is

defined by o f(z+a)-f(z) lim o(z)_df _ f'(z)
5z—0 oL &0 & dz

provided that the limit is independent of the particular approach to the
point z. For real variable, we require that
lim f'(x)= lim f'(x)=f'(x,)

X—>Xg " X—>X,

Now, with z (or z,;) some point in a plane, our requirement that
the limit be independent of the direction of approach is very
restrictive.
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Cauchy—-Riemann: Part Two

| OL = OX + 10y
Consider

Oof = U+ 16V

S ou+1dv

0L OX+16Y

Let us take limit by the two different approaches as in the

figure. First,

with oy = 0, we let 6x->0,

. Of . AU .V
lim —=lim| —+1—
2—0 07 =0\ X OX

ou av
= — +1
OX 6x
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Cauchy—Riemann: Part Three

Assuming the partial derivatives exist. For a second approach,
we set 6x = 0 and then let dy—> 0. This leads to
of s ou oV

: -+
52—0 OZ oy oYy
If we have a derivative, the above two results must be identical.

S0, ou oV ou oV

ox oy oy ox

These are the famous Cauchy-Riemann conditions. These
Cauchy-Riemann conditions are necessary for the
existence of a derivative, that is, if exists, the C-R
conditions must hold.

Conversely, if the C-R conditions are satisfied and the
partial derivatives of u(x,y) and v(x,y) are continuous,
then exists.
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Analytic functions: Part One

If f(z) is differentiable at z=z, andin some small
region around Z=12, ,we say that f(z) is analytic at Z,

= Differentiable: If Cauchy-Riemann conditions are satisfied
the partial derivatives of u and v are continuous

For Analytic functions: VU=V =0

For integration: In close analogy to the integral of a real
function, The contour Z, — Z, is divided into n N — o
Intervals .Let ‘Azj‘z‘zj_zj_l‘_)o for j. Then
n Zo'
lim Y 1 -z-:J.fzdz
n—m% (é/J)A J ( )
- 2

The right-hand side of the above equation is called the contour (path)
integral of f(z2)
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Analytic functions: Part Two

n Zo i
lim Y f(¢i Az, = | f(z)dz
eSO

provided that the limit exists and is
independent of the details of
choosing the points z; and £,
where ¢; is a point on the curve bewteen =

z;and z; .

The right-hand side of the above equation is called the contour (path)
integral of f(z2)
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Analytic functions: Part Three

As an alternative, the contour may be defined by

Zy X2Y2
I f(z)dz= I[u(x, y)+iv(x, y)]dx +idy]
cl c X1Y1
X2Y2 X2Y2
= j [udx —vdy]+i j[vdx+udy]
¢ X ¢ XN

with the path C specified. This reduces the complex integral to the
complex sum of real integrals. It's somewhat analogous to the case of
the vector integral.
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Analytic functions: Part Four

An important example jz”dz
C

where C is a circle of radius r>0 around the origin z=0 in the direction
of counterclockwise.

_ vaif
In polar coordinates, we parameterize £=1€

and dz=ired®  and have
n+l 27
Zimjz”dz= J-exp[i(n +1)9]de
C
0 forn=-1

1 forn=-1
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Cauchy’s integral Theorem: Part One

If a function f(z) is analytical (therefore single-valued)
[and its partial derivatives are continuous] through
some simply connected region R, for every closed path
CinR,

%
§ f(z)dz=0 =
C — \____,0 7 —
Stokes’ theorem:

Proof: (under relatively restrictive condition: the partial
derivative of u, v are continuous, which are actually not
required but usually satisfied in physical problems)

§ f(z)dz = &(udx —vdy)+ i§(vdx + udy)

C C C
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Cauchy’s integral Theorem: Part Two

These two line integrals can be converted to surface
Integrals by Stokes’ theorem

fA-di=[vxA-ds

S
A=Ax+Ay ds = dxdyz

Pl ady)=fadi=[vxads - j(ag\xy - ]dxdy

C C

N —
U)'—‘

For the real part, If we letu =A,, and v = -A,,

the u ov
f§ CD( vdy) = J[&+@]d><dy =0 [since C-R conditions &——— ]
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Cauchy’s integral Theorem:Part Three

For the imaginary part, setting u = Ay and v = Ax, we have
§(vdx+udy):_.‘ u_v dxdy =0
oX oy
$F(z)dz =0

The consequence of the theorem is that for analytic functions the line
integral is a function only of its end points, independent of the path of
integration,

L2 A

jf(z)dz:p(zz)_F(zl):_j f(2)dz

4 Z9
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Multiply Connected Regions: One

= The original statement of our theorem demanded a simply
connected region. This restriction may easily be relaxed by the
creation of a barrier, a contour line.

= Consider the multiply connected region of the figure below In which
f(z) is not defined for the interior R’

C 7
WIJIJIII/
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ultiply Connected Regions: Two

Cauchy’s integral theorem is not valid for the contour C, but we can
construct a C' for which the theorem holds. If line segments DE and
GA arbitrarily close together, then

JA'\ f(z)dz = —.T' f(z)dz

<

g

Z‘ .

// ////I/”n””/// .
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iMuItipIy Connected Regions: Three

@@m{j+j+j+j}@m

C’ ABD DE GA EFG
(ABDEFGA) y
:“ + | }f(z)dzzo RS
ABD EFG | y/
§f(z)dz: §f(z)dz |
C, C, - __ /A
ABD —)Cl EFG —)_Cz %/Illllllll/ 7 - x
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Cauchy’s Integral Formula: One

If f(z) is analytic on and within a closed contour C then

F20 it (zo)

Z—7Z
C 0

In which z, is some point in the interior region bounded by
C. Note that here z-z, #0 and the integral is well defined.

Although f(z) is assumed analytic, the integrand (f(z)/z-z,)
IS not analytic at z=z, unless f(z,)=0. If the contour is
deformed as in the figure on the next slide

Cauchy’s integral theorem applies.
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Cauchy’s Integral Formula: Two

So we have
§f(z)dz_§ f(z) dr = 0
22— sz—zo _

let Z-7, = re‘e , here r is small and will eventually be made to
approach zero

§ f(z)dz iy — § f(zo freig)rieiedg :if(zo)§d9=27zif(zo)

Z-1 0
S, 0 S, re cAr—0)
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Cauchy’s Integral Formula: Three

Here is a remarkable result. The value of an analytic
function is given at an interior point at z=z, once the
values on the boundary C are specified.

What happens if z, is exterior to C?

In this case the entire integral is analytic on and within C,
so the integral vanishes.

1 § f(z)dz :{f(zo), Zpinterior

27 2 -2 0, Zo exterior
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Cauchy’s Integral Formula: Four

Cauchy’s integral formula may be used to obtain an expression for
the derivation of f(z)

Fz)= d(io (Zii I fz(f)z(:Z]

LS TR d( 1 j: 1_§(f(z)dz

27 dzg\z-25 ) 2747 (z-27,)°

Moreover, for the n-th order of derivative

O

— 7, )n+1
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Cauchy’s Integral Formula: Five

We now see that, the requirement that f(z) be analytic not
only guarantees a first derivative but derivatives of all
orders as well! The derivatives of f(z) are automatically
analytic. Here, it is worth to indicate that the converse of
Cauchy’s integral theorem holds as well

Morera’s theorem:
If a function f(z) is continuous in a simply connected region R

and §>C f (z)dz =0 for every closed C within R, then f(z) is
analytic throught R (see the text book).
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Liouville’s Theorem: Part One

Liouville’s theorem: If f(z) is analytic and bounded in the
complex plane, it is a constant.

Proof: For any z,, construct a circle of radius R around zo,

1 f (z)dz M 27z2R ™M
| f '(Zo)| — - < g
270 i(z —20)°

T 27 R2 0 R
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Liouville’s Theorem: Part Two

Since R is arbitrary, let R —> o . we have

f'(z)=0,i.e,f(z) = const.

Conversely, the slightest deviation of an analytic function from a
constant value implies that there must be at least one singularity

somewhere in the infinite complex plane. Apart from the trivial
constant functions, then, singularities are a fact of life, and we must
learn to live with them, and to use them further.
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Laurent Series: Part One

Taylor Expansion

Suppose we are trying to expand f(z) about z=z0, i.e.,f(z)= nz_;an(z—zo

and we have z=z, as the nearest point for which f(z) is not analytic. We
construct a circle C centered at z=z, with radius

/

2’ — 20| <|2z1 - 29|

From the Cauchy integral formula,

f(z')dz' 1 f(z')dz’
f(Z) 27‘5I§ 7' —7 27ti§(2'_20)_(z_20) 4
)dz
i)z -7, [1 2,)/(2'~2,)]

-
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Laurent Series: Part Two

Here z' is a point on C and z is any point interior to C. For
|t] <1, we note the identity

1 2 < n
—— =1+t +t° +--- = t
T 2

So we may write

f(z)__§z(z —2zo)" f(2')dz’

n=0 (Z,_Zo)n+l

which is our desired Taylor expansion, just as for real variable power
series, this expansion is unique for a given zo.

= n z')dz i (n) (5
oy G e <3 )

|
=0 n

(z-x,)"  forinteger n,

From the binomial expansion of g(z)
It IS easy to see, for real Xo

132



ASCENRUST.c
Laurent Series: Part Three

We frequently encounter functions that are analytic in
annular region

Drawing an imaginary contour
line to convert our region into a
simply connected region, we
apply Cauchy’s integral formula
for C, and C,, with radiir, and r,,
and obtain
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Laurent Series: Part Four

We let r2 —»r and r1 —»R, so for Ca, \Z'—Zo\>\2—20\ while for C2,
We expand two denominators and we get:

I-1,< -1}

f(z')dz’ f(z')dz’

fla)= 27 i)(z'—Zo)[l—(z—Zo)/(z'—Zo)]+§(z—Zo)[l—(z'—zo)/(Z—zo)]

n

1 nf f(Z)dz 1 1 , .
_2_721_2(2—20) §(z’—zo)”+1+27fiz(z—zo)”+l &(z ~17q) f(z')dz

f(z)= i a,(z—zy)" (Laurent Series)
N=—o0
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Laurent Series: Part Five

Drawing an imaginary contour line to convert our region into
a simply connected region, we apply Cauchy’s integral
formula for C2 and C1, with radii r2 and rl, and obtain

F2)=5

b -4

| C C,

f(z')dz’

z'— 7

We let r2 —»r and r1 —»R, so for Ci, ‘Z'—Zo\>‘2—zo‘ while for cZ,\z'—zo\<\z—zo\ .
We expand two denominators as we did before
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Laurent Series: Part Six

Where:
f(z')dz’

1
- 27 Qf(zr_ Zo)n+1

an

Here C may be any contour with the annular region r < |z-
Zo|] < R encircling zo once in a counterclockwise sense.

Laurent Series need not to come from evaluation of
contour integrals. Other techniques such as ordinary
series expansion may provide the coefficients.
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Analytic Continuation: Part One

For example f(z) — ]_/(]__|_ Z)

which has a simple pole at z = -1 and is analytic

elsewhere. For |z] < 1, the geometric series e
while expanding it about z=i leads to f2,

w w N QO
f@=—t =32 f=— (—ﬂj DL

1+2° e 1+i =\ z+i

l-l; ; L ._
’ ’ §|,¢y C]
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Analytic Continuation: Part Two

Suppose we expand it about z =i, so that

1 1
R P e R Y ey e

1 [1_z—i+(z—i)2 +}

1+ 1+i  (A+i)?
converges for |z i <[1+i| = J2  (Fig.1.10)
The above three equations are different representations of the same

function. Each representation has its own domain of convergence.

If two analytic functions coincide in any region, such as the overlap of s1 and s2,
of coincide on any line segment, they are the same function in the sense that they
will coincide everywhere as long as they are well-defined.
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