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CLASSICAL PHYSICS

ABSTRACT

TheClassical Physics Fundamentélsndbookwas developed to assist nuclear facility
operating contractors provide operators, maintenance personnel, and the technical staff with the
necessary fundamentals training to ensure a basic understangimgsichlforces andheir
properties. The handbook includes information on the units used to measure physical properties;
vectors, and how they are used to show the net effect of various forces; Newton's Laws of
motion, and how to use these laws in force and motion applications; and the concepts of energy,
work, and power, and how to measure and calculate the energy involved in various applications.
This information will provide personnelith a foundation for understanding the basic operation
of various types of DOE nuclear facility systems and equipment.

Key Words: Training Material, Classical Physics, Vectors, Newton's Laws, Energy, Work,
Power
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CLASSICAL PHYSICS

FOREWORD

The Department of Energy (DOE) Fundamentals Handbaakssist of teracademic
subjects, which include Mathematics; Classical Physics; Thermodynamics, Heat Transfer, and Fluid
Flow; Instrumentation and Control; Electrical Science; Material Scidvieehanical Science;
Chemistry; Engineering Symbology, Prints, and Drawings; and Nuelegics andReactor
Theory. The handbooks are provided as an aid to DOE nuclear facility contractors.

These handbooks were first published as Reactor Operator Fundamentals Manuals in 1985
for use by DOE Category A reactors. Thgettbareas, subject matter content, and level of detalil
of the Reactor Operatdfundamentals Manuals was determined from sesetates. DOE
Category A reactor training managers determined which materials should be included, and served
as a primary reference in the initial development phase. Training guidelines from the commercial
nuclear powemdustry, results of job artdsk analyses, and independent input from contractors
and operations-oriented personnel were all considered and included to some degree in developing
the text material and learning objectives.

TheDOE Fundamentals Handboolepresent the needs of various DOE nuclear facilities'
fundamentals training requirements. To increase their applicability to nonreactor nuclear facilities,
the Reactor Operatéiundamentals Manual learning objectivese distributed to thHuclear
Facility Training Coadination Program Steering Committee for review and comment. To update
their reactor-specific content, DOE Categoryeactortraining managers also reviewed and
commented on the content. On the basis of feedback from these sources, information that applied
to two ormore DOEnuclear facilitiesvas considered generic and was included. The final draft
of each of these handbooks was then reviewed by these two groups. This approach has resulted
in revised modular handbooltsat contain sufficient detail such that edabhility mayadjust the
content to fit their specific needs.

Each handbook contains an abstract, a foreword, an overview, learning objectives, and text
material, and is divided into modules so that content and order may be modified by individual DOE
contractors tosuit theirspecific trainingneeds. Each subject area is supported by a separate
examination bank with an answer key.

The DOE Fundamentals Handbookave been prepared for the Assistant Secretary for
Nuclear Energy, Office of Nuclear Safety Policy and Standards, by the DOE Training Coordination
Program. This program is managed by EG&G ldaho, Inc.
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CLASSICAL PHYSICS

OVERVIEW

TheDepartment of Energy Fundamentals HandbewtitledClassical Physice/as prepared
as an information resource for personnel who are responsible for the operation of the Department's
nuclear facilities. A basianderstanding of classigahysics is necessary for DOE nucléaeility
operators, maintenance personnel, and the technical stafidigoperate andhaintain the facility
and facility ipport systems. The information in thandbook is presented to provide a foundation
for applying engineeringoncepts to the job.This knowledgewill help personnel mordully
understand the impathattheir actions may have on the safe astiable operation offacility
components and systems.

TheClassical Physichandbook consists @iffe moduleghat arecontained in one volume.
The following is a brieflescription of the information psented in each module of the handbook.

Module 1 - Unit Systems
This modulepresents the concept ohit systems for the fundamental dimensions of mass,
length, and time used in physics. Additionally, derivation of units and the conversion of these
units is presented.

Module 2 - \éctors
This module contains information to aid in the determination of the net effect of various
forces on an object anohcludes graphingrectors,adding vectors, anddetermining
component vectors of a resultant vector.

Module 3 - Force and Motion
This modulepresents Newton's Laws of force and motion.

Module 4 - Application of Newton's Laws

This module describes the effect of static alytlamicforces on objects andicludes a
discussion of the forcesommonlyencountered in a nuclegacility.

Module 5 - Energy, Wrk, and Power
This module definesnergywork, and poweridentifies theivarious forms, and discusses

the conservation of energyork, and powemcluding themeasurement and calculation of
each.
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CLASSICAL PHYSICS

The information contained in this handbook is by no means all encompassirajtefmpt
to present the entirgcience of classical physiesuld be impractical However, theClassical
Physicshandbook does present enougformation to provide theeademwith a fundamental
knowledgéelevel sufficient tounderstand the advanced theoretical concepts preseradtmn
subject areas, and better understanoiasic system and equipmemgerations.
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Unit Systems OBJECTIVES

TERMINAL OBJECTIVE

1.0  Given appropriate conversion tablE©QNVERT betweerEnglish and Sl system units of
measurement.

ENABLING OBJECTIVES

1.1 DEFINE the thregundamental dimensions: length, mass, and time.

1.2 LIST standard units of theindamental dimensions for each of the following systems:
a. International System of Uni¢SI)
b. English System

1.3 DIFFERENTIATE between fundamental and derived measurements.
1.4  Given appropriate conversion tablEQNVERT betweerEnglish and Sl units dength.
1.5  Givenappropriate conversion tabl€SODNVERT betweerEnglish and Sl units of mass.

1.6 CONVERT time measurementsetween the following:
Years

Weeks

Days

Hours

Minutes

Seconds

"0 o0 Tw
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Unit Systems FUNDAMENTAL DIMENSIONS

FUNDAMENTAL DIMENSIONS

Length, mass, and time are the three fundamental dimensionéich the
measurement of all physical quantities is dependent.

EOC1.1 DEFINE the three fundamental dimensions: length,
mass, and time.

EOC1.2 LIST standard units of the fundamentaldimensions for
each of the following systems:
a. International System of Units (SI)

b. English System

EO 1.3 DIFFERENTIATE between fundamental and derived
measurements.

Fundamental Dimensions

Physics is a science based upon exact measuremphysitalquantitiesthat are dependent upon
three fundamental dimensions. The three fundamental or primary dimensianasselengthand
time. These threédundamental units must henderstood in order to lay the foundation for the
manyconcepts angrinciples presented in this material.

Mass

Massis the amount of material present in an object. This measurement describes "how
much" material makes up an object. Often, massveeight are confused d®ing the

same because thmits used to describe them aimilar. eight (a derived unit, not

a fundamental unit) is a measurement tihedgcribes the force of gravity on the "mass”

of an object.

Length

Lengthis the distance between two points. The concefermgth is needed to locate

the position of a point in space and thereby describesiteeof a physicabbject or
system. When measuring a length of pipe, the ends of the pipe are the two points and
the distance between the two points is the lengthtypical unitused to describe
length is the'foot."”

Rev. 0
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FUNDAMENTAL DIMENSIONS Unit Systems

Time

Timeis the duration between two instants. The measuremeimefis described in
units of seconds, minutes, bours.

Units

A number alone is not sufficient to describelaysicalquantity. For example, to sdgat "a
pipe must be 4 long to fit" has no meaning unless a unmheasurement for length is also
specified. By adding units to the number, it becomes clear, "a pipe must be 4 feet long to fit."

The unit defines the magnitude oheeasurement. If we have a measurement of length, the
unit used to describe the length could b®at or yard, each ofvhich describes a different
magnitude of length. The importancespfecifying the units of measurement for a number
used to describe physicalquantity is doubly emphasized when it is notbat the same
physical quantity may be measured using a variety of different units. For example, length may
be measured in meters, inches, miles, furlongispfas, kilometers, or a variety otherunits.

Units of measurement have been established for use with each of the fundamental dimensions

mentioned previously. The following section describes the unit systems iodsg and
providesexamples of unitthat are used ieach system.

Unit Systems

There are two unit systems in use at fflresentime, English units anthternational System
of Units (SI).

In the United States, the English system is curremglgd. This systentonsists of various units
for each of the fundamental dimensions or measurements. These units are shabla h T
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Unit Systems FUNDAMENTAL DIMENSIONS

TABLE 1
English Units of Measurement
Length Mass Time
Inch Ounce *Second
* Foot * Pound Minute
Yard Ton Hour
Mile Day
Month
Year

* Standardunit of measure

The English system is presenthged in thefield of engineering andhroughout the United
States. The foot-pound-second (FR$3tem is the usual unit systamed in the U.S. when
dealing with physics.

Over the years therigave been movements standardize units sihat all countriesincluding
the United Statesyill adopt the Sisystem. The Sl system is made up of two related systems,
the meter-kilogram-second (MKSystem and theentimeter-gram-second (CGS)stem.

The MKS and CGS systems are much simpler tothaa theEnglish systenbecause they use
a decimal-based system in which prefixeswsed to denote powers of ten. Fetample, one
kilometer is 1000 meters, and one centimeter is one one-hundredth of a metdendlisa
system has odd units of conversion. For exampiaila@is 5280 feet, and amch is onetwelfth
of a foot.

Rev. 0 Page 3 CP-01



FUNDAMENTAL DIMENSIONS

Unit Systems

The MKS system isisedprimarily for calculations in thdield of physics whiléboth the MKS
and CGS systems atsed in thdield of chemistry. Theunits for each of these systems are
shown in &bles 2 and 3 below.

TABLE 2
MKS Units of Measurement
Length Mass Time
Millimeter Milligram * Second
* Meter Gram Minute
Kilometer * Kilogram Hour
Day
Month
Year
* Standardunit of measure
TABLE 3
CGS Units of Measurement
Length Mass Time
* Centimeter Mlligram * Second
Meter *Gram Minute
Kilometer Kilogram Hour
Day
Month
Year
* Standardunit of measure

CP-01
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Unit Systems FUNDAMENTAL DIMENSIONS

The following tables show approximate lengths, massestiaed for somdamiliar objects or
events.

TABLE 4
Approximate Lengths of Familiar Objects
Object Length
(meters)
Diameter of Erth Orbit Around Sun 2 x 10
FootballField 1x1G
Diameter ofDime 2 X107
Thickness of Window Pane 1x%0
Thickness ofPaper 1x10
TABLE 5
Approximate Masses of Familiar Objects
Object Mass
(kilograms)
Earth 6 x 16*
House 2x10
Car 2x16
Quart of Water 1
Dime 3x10
Postage Stamp 5x £0
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FUNDAMENTAL DIMENSIONS Unit Systems

TABLE 6
Approximate Times of Familiar Events
Event Time
(seconds)

Age of Earth 2x18
HumanLife Span 2x10
Earth Rotation Around Sun 3x10
Earth Rotation Aroundxis 8.64 x 10
Time Between Heart Beats 1

Derived Measurements

Most physical quantities have unttsat arecombinations of théhreefundamentatimensions

of length, mass, and time. When these dimensions or measurements are combiraodhey

what are referred to aerivedunits. This meanghatthey have been "derived" from one or

more fundamental measurements. These combinations of fundamental measurements can be the
combination of the same or different units. The following are examplearidus derived units.

Area

Area is the prduct of two lengths (e.g., width bength for a rectanglejhus, it has
the units of lengtisquared, such as squamehes (ir? ) oisquare meters (fn ).

Imx1im=1nmM

4in.x2in.=8in?

Volume

Volume is the product of three lengths (elgngth x width xdepth for a rectangular
solid); thus, it has the units of length cubed, such as cubic inchés (in. ) orroebécs

(m®). The MKS and CGS unit systems have a specific unit for volume called the liter
(I). One liter is equal td 000 cubic centimeters (1 1=1000tm ).

2in.x3in.x5in. =30t
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Unit Systems FUNDAMENTAL DIMENSIONS

Density

Density is a measure of thmass of arobject per unitvolume;thus, it hasunits of
mass divided by lengtbubed such as kilograms per cubic meter (Kg/m ) or pounds
per cubic foot (Ibs/ft ).

15 Ibs/5 fé = 3 Ibs/ft

Velocity

Velocity is the change in length per unit tintbus, it hasunits such as kilometers per
hour (km/h) or feet per second (ft/s).

Acceleration
Acceleation is a measure of the change in velocity or velocity pertumé; thus, it

has units such as centimeters per second per second (cm/s ) or feet per second per
second (ft/§ ).
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FUNDAMENTAL DIMENSIONS Unit Systems

Summary

The mainpoints of thischapter arsummarized below.

Fundamental Dimensions Summary

The fundamental measurements consist of:

. Length - distance between two points
. Mass - amount of material in an object
. Time - duration between two instants

The English system of units is based on the following standard units:

. Foot
. Pound
. Second

The Sl system of measurement consists of the following standard units:

MKS CGS
+ Meter * Centimeter
» Kilogram o Gram
* Second * Second

Derived units are made up of a combination of units to describe various
physical quantities. For example:

. Area - square inches (in. )
. Volume - cubic inches (ih. ) or liters
. Density - mass per volume (IbAn. )

CP-01 Page 8 Rev. 0



Unit Systems UNIT CONVERSIONS

UNIT CONVERSIONS

In order to apply measurements from the S| system to the English system, it is
necessary to develop relationshipskwfown equivalents (conversidactors).

These equivalents can then be used to convert from the given units of measure to
the desired units of measure.

EOC14 CONVERT between English and Sl units of length.
EO 15 CONVERT between English and SI units of mass.
EOC 1.6 CONVERT time measurements between the following:
a. Years
b. Weeks
C. Days
d. Hours
e. Minutes
f. Seconds

Personnel at DOE nuclear facilties aféen exposed to both tHenglish and Sl systems of units in
their work. In some cases, the measureméms are taken or reaflom an instrumentwill be
different from those required by a procedureThis situation will require the conversion of
measurements to those required byphecedure.

Conversion Factors

Conversion factors are based on relationships of equivdiemtsdifferent measurement systems.
These conversion factors are then applied to the giveasurement in order to convert it to the units

that are required. The equivalent relationships between different units of measurement are defined in
conversion tables. Sonexamples from conversion tables are given below.

. 1 yard = .9144 meters
. 1 kilogram = 2.20%oundsmass (Ibm)
. 1 hour = 3600 seconds
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UNIT CONVERSIONS

Unit Systems

A typical conversion table is shown iralble 7.

TABLE 7
Conversion Table

Length lyd = 0.9144 m

12 in. = 1ft

5280 ft = 1mile

Im = 3.281 ft

1lin. = 0.0254 m
Time 60 sec = 1 min

3600 sec = 1hr
Mass 1 lbom = 0.4535 kg

2.205 Ibm = 1 kg

1 kg = 1000 g
Area 1 = 144 ir?

10.764 ft = 1M

1yc? = 9 ft

1 mile? = 3.098 X 16 vyd
Volume 7.48 gal = 11t

1 gal = 3.785 | (liter)

11 = 1000 cm

Unit Conversion

To convertfrom one measurement unit éamother measurememit (for example, taonvert 5 feet
to inches), first select thappropriateequivalent relationship from the conversion tafiae this

example, 1 foot = 12 inches). Conversioasically a multiplication by 1. We can divitethsides
of the equation 1 ft = 1thches by oot to obtain the following.

1ft _ 12 inches _ 12 inches

Then
1ft 1 foot 1 foot

The relationship%S Is a conversidactorwhich we can use in our examplet¢onvert
00

5 feet to inches.
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Unit Systems UNIT CONVERSIONS

Using the example, teet is to be converted tiaches. Startwith the obvious equation

5 ft = 5 ft, and multiply theright hand side by - 12%1‘;“63 .

5feet=5feetx 1

5 feet = 5 feet xllenches: 5 x 12 inches= 60 inches.
Thus, 5 feet is equivalent to 60 inches.

Steps for Unit Conversion

Using the following example, we will step through the process for converting frgivea set of units
to a desired set of units.

Convert 795 mto ft.

Step 1. Select the equivalent relationship from the conversion talabI€T7).

1 meter = 3.281 ft

Step 2. Divide to obtain the factor 1 as a rat(owi
present unit
L. 3281ft
1m
Step 3. Multiply the quantity by the ratio.
1m 1 1m
=795x3.281 ft
=2608.395 ft
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UNIT CONVERSIONS Unit Systems

If an equivalent relationship between thwen units and thelesired units cannot be found in the
conversion tables, multipleonversion factors must be used. The conversion is perfornsvaral
steps until the measurement is in the desired units. The greasurement must lpeultiplied by each
conversiorfactor (ratio). After thecommon units have been cancetad, theanswemwill be in the
desired units.

Example: Convert 2.91 sagniles to sgmeters.

Step 1. Select the equailent relationship from the conversion table. Becdhsee is
no direct conversion shown for squamgles to square metersmultiple
conversions will be necessary. For this example the following conversithns
be used.

sq miles to sq yds to sq ft to sqg m
1 sq mile = 3.098 x 10 sq yd
1sqyd=9sqft

10.764 sqft=1sqm

Step 2. Express threlationship as aatio (desired unit/present unit).
3.098 x 16 sq yd
1 sq mile
Step 3. Multiply the quantity by the ratio.
3.098 x 16 sq y
1 sq mile
Step 4. Repeat the steps until the value is indésired units.
_ 9sqft
1 sq yd

1=

(2.91 sg miles)

d) - 9.015 x 16 sq yd

(9.015 x 16 sq yd) x| 23| _ 8114 x 16 sq #t
1 sq yd

1sgm
10.764 sq ft

CP-01 Page 12 Rev. 0



Unit Systems UNIT CONVERSIONS

(8.114 x 10 sq ft) x( 1sqgm J _ (8.114 x 10) (1 sq m)

10.764 sq 10.764

_ 8114 x 16 sqg m
10.764

=7.538x16 sgm

It is possible tgperform all of the conversions insingleequation as long as all of tregpropriate
conversion factors atiecluded.

(2.91 sq miles) >{3'098 x 10 sq yd) X ( 9 sq ft) X ( 1sgm J

1 sq mile 1sqyd 10.764 sq
_ (2.91) x (3.098 x 18 (9) (1 sq m)
10.764
_ 8114 x 16 sqg m
10.764

=7.538x16 sgm
Example:
A Swedish firm isproducing avalvethat is to be used by admerican supplier. The Swedish firm
uses the MKS system for athachining. Toconform with the MKS system, howill the following
measurements be listed?

Valve stem 57.20in.

Valve inlet andoutlet

[.D. 22.00in.
O.D. 27.50 in.
Solution:
Valve stem

57.20in. x 0.0254n/in. = 1.453 m

Valve inlet andoutlet
[.D. 22.00 x 0.0254 =0.559 m
0O.D. 27.50 x0.0254 =0.699 m
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Unit Systems

Examples of common conversifactors are shown indble 8.

TABLE 8
Conversion Factors
CONVERSION FACTORS FOR COMMON UNITS OF MASS
9 —kag_ t _lbm
1 gram = 1 0.001 1¢ 2.2046 x 10
1 kilogram = 1000 1 0.001 2.2046
1 metric ton (t) = 19 1000 1 2204.6
1 pound-mass (Ibm) = 453.59 0.45359 4.5359 x 10 1
1 slug = 14,594 14.594 0.014594 32.174
CONVERSION FACTORS FOR COMMON UNITS OF LENGTH
cm m km in. ft mi
1 centimeter = 1 0.01 10 0.39370 0.032808 6.2137 X®10
1 meter = 100 1 0.001 39.370 3.2808 6.2137 % 10
1 kilometer = 16 1000 1 39,370 3280.8 0.62137
linch = 2.5400 0.025400 2.5400 x 10 1 0.083333 1.5783% 10
1 foot = 30.480 0.30480 3.0480 x 10 12.000 1 1.8939 % 10
1 mile = 1.6093x 18 1609.3 1.6093 63,360 5280.0 1
CP-01 Page 14 Rev. 0
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UNIT CONVERSIONS

Rev. 0

TABLE 8 (Cont.)
Conversion Factors
CONVERSION FACTORS FOR COMMON UNITS OF TIME
_sec_ _min _hr
1 second = 1 0.017 2.7x10
1 minute = 60 1 0.017
1 hour = 3600 60 1
1 day = 86,400 1440 24
1 year = 3.15x 10 5.26 x 10 8760
__day ear
1 second = 1.16 x 10 3.1 x10
1 minute = 6.9 x 10 1.9x 10
1 hour = 4.16 x 18 1.14x 10
1 day = 1 2.74 x 1®
1 year = 365 1
Page 15 CP-01
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Summary

Unit conversion is summarized below.

Unit Conversion Summary
» Conversion Tables list equivalent relationships.
» Conversion Factors are obtained by dividing to get a multiplying factor (1).
Unit Conversion Steps
e Step l- Selectthe equivalent relationship from the conversion table.
» Step 2- Express the relationship as a conversion factor.

o« Step 3- Multiply the given quantity by the conversion factor.

CP-01 Page 16 Rev. 0
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Vectors OBJECTIVES

TERMINAL OBJECTIVE

1.0 Using vectordDJETERMINE the net force acting on an object.

ENABLING OBJECTIVES

1.1 DEFINE the following as they relate to vectors:

a. Scalar quantity

b. Vector quantity

C. Vector component
d. Resultant

1.2 DETERMINE components of a vector from a resultant vector.

1.3 ADD vectors using the following methods:

a. Graphical
b. Component addition
C. Analytical
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Vectors SCALAR AND VECTOR QUANTITIES

SCALAR AND VECTOR QUANTITIES

Scalars are quantities that have magnitude only; #ieyindependent of direction.
Vectors have both magnitude and direction. The length of a vector represents
magnitude. The arrow shows direction.

EO 11 DEFINE the following as they relate to vectors:
a. Scalar quantity
b. Vector quantity

Scalar Quantities

Most of the physical quantities encountered in physics are either scalar or vector quantities. A
scalar quantity is defined as a quantttyathas magnitude only. Typical examples of scalar
guantitiesare time, speed, temperature, aothme. A scalar quantity or parameter has no
directional component, only magnitude. For example, the units for time (minutes, days, hours,
etc.) represent an amounttwhe onlyand tell nothing of direction. Additional examples of
scalar quantities are density, mass, and energy.

Vector Quantities

A vectorquantity is defined as a quantity that has both magnitude and direction. To work with
vector quantities, one must know the method for representing these quantities.

Magnitude, or "size" of asector, is also N
referred to as the vector's "displacement.” | It
can be thought of as the scalar portion of the
vector and is represented by the length of the
vector. By definition, avector has both
magnitude and direction. Direction indicatgs
how the vector is orientecklative to some
reference axis, as shown in Figure 1. W E

45°

Using north/south and east/west reference
axes, vector"A" is oriented inthe NE
guadrant with a direction of 45 north of thg
EW axis. Giving direction to scalar "A"
makes it a vector. Theength of "A" is

representative of its magnitude 0
displacement.

-

Figure 1 Vector Reference Axis
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SCALAR AND VECTOR QUANTITIES Vectors

To help distinguish between a scalar anceetor, let's look at arexamplewhere the only
information known is that a car is moving at 50 npleshour. The information given (50 mph)

only refers to the car's speedhich is a scalaguantity. It does not indicate the direction the

car is moving. However, the same car traveling at 50 mph due east indicates the velocity of the
car because it has magnitude (&0h) and direction (due east); therefore, a vector is indicated.
When a vector is diagrammed, a straight line is drawn to show the unit of length. An arrow is
drawn on one end of the line. The length of the line represents the magnitude of the vector, and
the arrow represents the direction of the vector.

Description of a Simple Vector

Vectors aresimple straightlines used to illustrate the direction and magnitude of certain
guantities. Vectors have a starting point at one(&nkl and anarrow at the opposite end
(head), as shown in Figure 2.

Tail Head

. >

Figure 2 Vector

Examples of Vector Quantities

Displacement, velocity, acceleration, and force are examples of vector quantities. Momentum
and magnetidield strength are also goakamples ofrector quantities, althoughreewhat

more difficult to understand. In each of these examples, the main ingredients of magnitude and
direction are present.
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Summary

The important aspects of scalar and vector quantities are summarized below.

Scalar and Vector Quantities Summary

SCALAR QUANTITIES VECTOR QUANTITIES
. Magnitude only . Both magnitude and direction
. Independent of direction . Length represents magnitude
. Examples of scalars include: e Arrow shows direction

time, speed, volume, and

temperature . Examples ofvectors include:

force, velocity, and acceleration
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VECTOR IDENTIFICATION

Vectors are symbolized in specific ways in texts and on graphs, using letters or rectangular
coordinates.

In Written Materials

In textbooks, vector quantities are often represented by simply using a boldfaceA |&teC (R).
Particular quantities are predefinéd-(force, V - velocity, andA - acceleration). Vector quantities

are sometimes represented Ayg ,c R . Regardless of the convention usspecific vector
guantities must include magnitude and direction (for example, 50 mph due north, or 50%bf at 90 ).

Graphic Representation 0

Vector quantities aregraphically 1
represented using the rectangular 4+
coordinate system, a two-dimensional +
system that uses an x-axis and a y-axis. T
The x-axis is a horizonal straight ling. T
The y-axis is a vertical straight line
perpendicular to the x-axis. An © S e XC+>
example of a rectangular system |s 1
shown in Figure 3. 1

. . . 1 v
The intersection of the axes is called -

the point of origin. Each axis ig T
marked off in equal divisions in all four T
directions from the point of origin. Orj
the horizonal axis (x), values to th
right of the origin are positive (+).
Values to the left of the origin are Figure 3 Rectangular Coordinate System

negative (-). On the vertical axis (y),

values above the point of origin are

positive (+). Values below the origin are negative (-). It is very important to use the same units (divisions)
on both axes.

D
T

The rectangular coordinate system creates four infinite quadrants. Quadrant I is located above and

to the right of the origin. Quadrant Il is located above and to the left of the origin. Quadrant Ill is
situated to théeft and belowthe origin, and quadrant IV is located below and to the right of the
origin (see Figure 3).
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Graphic Representation of Vectors

With the coordinate system defined, the following explanation will illustrate how to locate vectors
that system.

First, using a ruler and graph paper, a rectangular coordiysteEm is laidbut asdescribed in the
previous section. The x- and y-axes are labeled. Equal divisions are marked off in all four directi
Those to the right and above the point of origin are labeled positive (+). Those to the left and be
the point of origin are labeled negative (-).

Beginning at the point of origin (intersection of the axes), a line segment of the proper length is sh
along thex-axis, inthe positive direction.This line segmentepresents the vector magnitude, or
displacement. Aarrow isplaced at the "head" of tiwector to indicate direction. The "tail" of the
vector is located at the point of origin (see Figure 4).

Displacement
- (Magnitude)

Figure 4 Displaying Vectors Graphically - Magnitude

Whenvectors are drawn that dmt fall on the x- or y-axes, the tail is located at the point of origin.
Depending on the vector description, theretas@ methods of locating the head of tector. If
coordinates (x,y) argiven, these values can pitted to locate the vector head. If the vector is
described in degrees, the line segment can be rotated counterclockwise from the x-axis to the
orientation, as shown in Figure 5.
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. Directional
Angle

Figure 5 Display Vectors Graphically - Direction

Because the x- and y-axes defiliection, conventional directional coordinates and degrees may also
be used to identify the x- and y-axes (see Figures 6 and 7).

Figure 6 Directional Coordinates
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Vectors VECTOR IDENTIFICATION
90°
T T
180° 0°
il v
270°
Figure 7 Degree Coordinates
Summary

The main points covered in this chapter are summarized below.

Vector Identification Summary
In text:

- Boldfaced letters A, F, R
- Capital letters with arrows ovex,(F, R )

Graphically:
- (x,y) coordinates

- Directional Coordinates
- Degrees

Rev. 0
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VECTORS: RESULTANTS AND COMPONENTS Vectors

VECTORS: RESULTANTS AND COMPONENTS

A resultant is a single vector which represents the combined effect of more other
vectors (called components). The components can be determined either graphically

or by using trigonometry.

EOC 11 DEFINE the following as they relate to vectors:
C. Vector component
d. Resultant

EO 1.2 DETERMINE components of a vector from a resultant
vector.

Resultant

Whentwo ormore vectors are added thggld Resultant Displacement = 8 Miles

the sum oresultantvector. A resultant vector ig
the result or sum ofector addition. Vector 7

addition is somewhat different from addition of

pure numbers unless the addition takes place al > >
a straight line. In the latter case, it reduces to th&_ A )
number line ofstandards or scale addition. Fd Y Y

example, ifone walkdive miles east and then 5 Miles 3 Miles
three miles east, heegght miles from his starting
point. On a graph (Figure 8), the sum of the two

vectors, i.e., thesum ofthe five miles pIUS the Figure 8 Vector Addition in Same Direction
threemile displacement, ithe total oresultant

displacement of eight miles.

4

TO
N
o

E

=

Similarly, if one walkdive miles east
5 Miles East and then threeiileswest, theresultant
0 1 2 3 4 5 6 7 | displacement iswo miles east(Figure
¢ } } } } - | | 9)_
¢ The vector éhgrams of Figure 8 and
Resultant 3 Miles West Figure 9arebasicallyscale diagrams of
Displocement what is happening ithe real world of
= 2 Miles East .. .\
addition of vector quantities.

Figure 9 Vector Addition in Opposite Directions
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Consider next the addition of vector quantitidsch are not in atraightline. For example,
consider the resultant displacement wh@eson travels founileseast and then thremriles
north. Again a scale drawing (Figure 10) is in order. Use a scale of 1 inch = 1 mile.

Miles

Figure 10 Vector Addition Not in Same Line

Whendrawing a scale drawing, one draws a straight line from the origin C to the final position

B to represent the net or resultant displacement. Drawing the straight line CB and measuring its
length, one should obtain about 5 inches. Then, since the scale of the drawing is 1 inch = 1 mile,
1 mile

inch

= 5 miles as the

this is used as a conversion factgiving 5 inches x

displacement.

Using a protractor otrigonometry, the acutangle ACB can be determined to ddsout 37 .
Thus, the resultant (or vector sum) of traveling 4 miles east plus 3 miles north is a displacement
of 5 miles at 37 degrees north of east.
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It is left as an exercise for the student to show that vector addition is commutative, using the
above example. Specifically, make a scale drawing showing that traveling 3 miles north and
then 4 miles east yields the same resultant as above.

It is also reasonably obvious that more than two vectors can be added. One can travel three
miles east and then three miles north and then threewef#sand arrive at a point three miles

north of the starting point. The sum of these three displacements is a resultant displacement
of three miles north. (If this is not immediately apparent, sketch it.)

A student problem is to find the net or resultant displacement if a person travels 9 miles south
and then 12 milesast and then 2®ilesnorth. Make acale drawing and determine the
magnitude and direction tiie resultantiisplacement. A scale of 2 miles per centimeter or

4 miles per inch will fit the drawing on standard paper.

Answer: About 20 miles at 53 north of east.

Vector Components

Component®f a vector are vectorgyhich whenadded yield the vector. Foexample, as

shown in the previous section (Figu@), traveling 3 miles north and then 4 miles east yields

a resultant displacement of 5 miles, 3ibrth of east. This exampledemonstrates that
component vectors of any two non-parallel directions can be obtained for any resultant vector
in the same planeFor the purposes diis manual, werestrict ourdiscussions to two
dimensional space. The student shoeddize that vectors can and do exist in three dimensional
space.

One could write an alternate problem: "If | am 5 miles from where | started northeast along a
line 37 N of east, how far north and how far east am | from my original position?" Drawing this

on a scale drawing, the vector components in the east and north directions can be measured to
be about 4 miles east and 3 mikesth. These two vectors are the components of the resultant
vector of 5 miles, 37 north of east.

Component vectors can be determined by plotting them on a rectangular coordinate system. For
example, a resultant vector ofubits at 583 can be broken down into its respective x and y
magnitudes. The x value of 3 ati yvalue of 4 can be determined using trigonometry or
graphically. Their magnitudes and position can be expressed by one of several conventions
including: (3,4), (x=3,y=4), (3at0, 4 at 90 ), and (5 af53). In the first expression, the first
term is the x-component (F ), and the second term is the y-compgnent (F ) of the associated
resultant vector.
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Vectors VECTORS: RESULTANTS AND COMPONENTS

As in the previougxample, if only
the resultant is given, instead df Y
component coordinates, one cgn
determine the vector components as
illustrated in Figurell. First, plot
the resultant on rectangulaf

coordinates and then project the Fy ¢ Fr

vector coordinates to trexis. The |

length along the x-axis is F , and the

length alongthe y-axis is ;. This N ¥
method is demonstrated in the F

following example.

For the resultant vector shown in
Figure 12, determine the component
vectorsgiven F; = 50Ibf at 53.
First, project a perpendicular line

from the head of f to the x-axis and

a similar line tathe y-axis. Where the projected lines meet, the axes determine the magnitude
size of the component vectors. In this example, the component vectors are 30 Ibf at 0 (F ) and
40 Ibfat 90 (F). If g had not already been drawn, the first step would have been to draw the
vector.

Figure 11 Vector Components

60

50 Fe= 50 Ibf at 53°

10 20 30 40 50 60

Figure 12 Component Vectors
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As an exercise, the student should graphically find the easterly and northerly components of a
13 miledisplacement a22.6 north of east. The correatswer is Snileseast and 1niles
north.

Trigonometry may also be used to determine vector components. Before explaining this method,
it may be helpful to reviewhe fundamental trigonometric functions. Recall that trigonometry is

a branch of mathematics that deals with the relationships between angles and the length of the sides
of triangles. The relationship between an acute angle of a right triangle, shown in Figure 13, and
its sides is given by three ratios.

C
a
S)
b
Figure 13 Right Triangle
sing - _opPosite _ a (2-1)
hypotenuse ¢
cosp - _adiacent _ Db (2-2)
hypotenuse ¢
tand Opposite _ a (2-3)
adjacent b

Before attempting to calculateector componentdirst make arough sketch that shows the
approximate location of the resultant vector in an x-y coordinate system. It is helpful to form a
visual picture before selecting the correct trigopnometric function to be used. Consider the example
of Figure 12, that was used previously. This time the component vectors will be calculated.
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Example 1:  Determinthe component vectors, F and F, fgr F =50 Ibf at 53 in Figure 14.
Use trigonometric functions.

60
50 Fo= 50 Ibf at 53°

10 20 30 40 50 60

Figure 14 E =50 Ibf at 33

F, is calculated as follows:

cosO = adjacent/hypotenuse
cosO =F /R orE =k co$
F, = (50)(cos53)

F, = (50)(0.6018)

F, = 30 Ibf on x-axis

F, is calculated as follows:

sin® = opposite/hypotenuse
sind =F /R ork =k si®
F, = (R )(sinb)

F, = (50)(sin 53)

F, = (50)(0.7986)

F, = 40 Ibf on y-axis

Therefore, the components for F age F =30 Ibfat0 and F =40 l6f at 90 . Note that this result
is identical to the result obtained using the graphic method.
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Example 2:  What are the component vectors, giyen F = 80 Ibfat 220 ? See Figure 15.

Y(+)
A
Fy = 61 Ibf
—60 —50—40-30-20—10 4= 220°
N e T IN
<>“\\\\\\\\\\\\'x<+)
+ —10
| + 20
| T F 51 Ibf
F = 80 Ibf = -
| R + 40 Y
— — — — 1 50
v
(-)

Figure 15 E =80 Ibf at 220

F, is calculated as follows:

cosO = adjacent/hypotenuse
cosO =F /R orE =k co$

F. = (R:)(cosD)

F, = (80)(cos 220)

F, = (80)(-0.766)
F,=-61Ibfat® or 61 Ibf at 180
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F, is calculated as follows:

sin0 = opposite/hypotenuse
sind =F /R ork =k si®

F, = F sind

F, = (80)(sin 220 )

F, = (80)(-0.6428)

F,=-511Ibf at 90 or 51 Ibf at 270

Therefore, the components fof F ate F =61 at 180 and F =51 Ibf’at 270 .

Summary

Vector terminology is summarized below.

Vector Terminology Summary

. Aresultant is a single vector that can replace two @r
more vectors.

. Components can be obtained for any two non-parallgl
directions if the vectors are in theame plane.
Restricting the treatment to perpendicular directiors
and twodimensionalspace, the components of &
vector are théwo vectors in the x and §or east-
west and north-south) directions which produce the
same effect as the original vector (or add to produge
the original vector).

. Components are determined from data, graphically
analytically.

—d

r
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GRAPHIC METHOD OF VECTOR ADDITION

Vectors are added to determine the magnitude and direction of the resultant.

EO 1.3 ADD \ectors using the following methods:
a. Graphical

Vector Addition

Component vectors are added to determine the resuétatdr. Forexample, whetwo or

more forces are acting on a single object, vector addition is used to determine the direction and
magnitude of the net (resultant) force on the object. Consider an airplane that travels due east
for 100miles at500 mph, then NE for 50 miles at 400 mph, and finally north for 500 miles at
500 mph. Vector addition can be used to determine the net distaraigplane is from its point

of origin or to predict when it will arrive at its destination.

Methods Used to Add Vectors

Several methods have been developed to add vectors. In this chapter, the graphic method will
be explained. The next chapter will explain the componeliti@a method. Either one of these
methods willprovide fairly accurate results. If high degree of accuracy is required, an
analytical method using geometric and trigonometric functions is required.

y (+
A

Using the Graphic Method

Before attempting to use this method, the
following equipment isieeded: standard lineay
(nonlog) graph paper, ruler, protractor, and pencil.
The graphic method utilizes a five-step process.

(=) - > x (+)

Step 1. Plot thefirst vector on the
rectangular (x-y) axes.

174

a. Ensure that the same
scale isused on both
axes.

b. Place the tafbeginning)

of the firstvector at the
origin of the axes as Figure 16 Rectangular Coordinate System

shown in Figure 16.
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Vectors GRAPHIC METHOD OF VECTOR ADDITION

Step 2. Draw the second vector connected|to y
the end of the first vector. \
a. Start thetail of the second T~
vector at the head of tHiest
vector. g
-> x ()
b. Ensure that the second vector fis
also drawn to scale.
C. Ensure proper angular
orientation of the second vector AR
with respect to the axes of the
graph (see Figure 17).
Figure 17 Vector F
Step 3. Add other vectors sequentially.
a. Add one vector at a time.
b. Always start the tail of the new vector at the head of the previous vector.
C. Draw all vectors to scale and with proper angular orientation.

y Step 4. Wherall givenvectors have been
drawn, draw andbbel aresultant
vector, k& , from the point of origin

A of the axes to the headtbe final
vector.
e
i
- x a. The tail of the resultant is the

tail of the firstvector drawn
as shown in Figure 18.

b. The head of the resultant is at
J the head of the last vector
drawn.

Figure 18 Resultant
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Step 5. Determine the magnitude and direction of the resultant.

a. Measure the displacement and angle directly from the graph using a ruler
and a protractor.

b. Determinghe components of the resultant by projection onto the x- and

y-axes.

Example 1:  What are the magnitude and directicth@fresultant for thellowing: F, = 3
units at 300 , F =4 units at 60 , and F = 8 units at 180 ? The three vectors and
their resultant are shown in Figure 19.

Answer: k. =4 units at 180

A §
(- x (+)

Figure 19 Graphic Addition - Example 1

Example 2.  Given X =50 Ohms at’90 , R =50 Ohmg at 0, and X =50 Ohmg ati250 ,
is the Resultant Z? (See Figuz8) Note: X idnductive reactance, X is
capacitive reactance and Z is impedance.

Answer: Z =50 Ohms at0
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R = 50 ohms at Q°

X, = 50 ohms at 90° Xe = 50 ohms at 270°

X - > X

Figure 20 Graphic Addition - Example 2

Summary

The steps of the graphic method of vector addition are summarized below.

Graphic Method Summary

. Draw rectangular coordinates.
. Draw first vector.
. Draw second vector connected to the end (headiysbfvector with proper

angular orientation.

. Draw remaining vectors, starting at the head of the preceding vector.
. Draw resultant vector from the origin of axes to head of final vector.
. Measure length of resultant.

. Measure angle of resultant vector addition.
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Vectors

COMPONENT ADDITION METHOD

Vector components are added along each axis to determine the magnitude and

direction of the resultant.

EO 1.3 ADD vectors using the following methods:

b. Component addition

An Explanation of Components

The component addition method refers to the

addition of vector coordinates on a rectangular

(x,y) coordinate system. Coordinates, as seen

in previous examples, locate a specific point|i
the system. Relative teectors, thaspecific

n

point is the head of the vector. There are two,,

ways tolocate that point. The heawhn be
located by counting the units along theaxis
and the units along theaxis, as illustrated in
Figure 21, where the poiritas coordinates
(4,3); i.e., the x component has a magnitude

4 and the y component has a magnitude of 3.

of

Y+

4,3

— X(+)

The head can also be found by locating a vector

of the propetength on the positive side of the
x-axis, with its tail athe intersection of the x-

and y- axes. Then the vector is rotated a given
number of degrees in the counterclockwise directionthitnexamplethe head of the vector is

located five units at 3629 . Five units is the length of the vector.

Using the Component Addition Method

Figure 21 Vector Addition Component Method

To add vectors using the component addition method, use the following four step method.

Step 1. Determine x- and y-axes components of all original vectors.

Step 2. Mathematically combine all x-axis components.

Note: When combining, recognize that positive x components at 180 are equivalent

to negative x components & 0 (+x at%180

-x°at 0).

CP-02 Page 20
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Vectors COMPONENT ADDITION METHOD

3. Mathematically combine all y-axis components (+y at 270 = -y°at 90 ).

4. Resulting (x,y) components are the (x,y) components of the resulting vector.
The following examples illustrate vector addition using the component addition method.
Example 1:

Given the following vectors what are the coordinates of the resultant vector, that is, the sum of ti
vectors?

F,=4,10),F =(-6,4), F =(2,-4), and F =(10,-2)
Step 1. Determine the x- and y-axes components of all four original vectors.

X-axes components = 4, -6, 2, 10
y-axes components = 10, 4, -4, -2

Step 2. Mathematically combine all x-axis components.
F,=4+(-6)+2+10
F,=4-6+2+10
F, =10

Step 3. Mathematically combine all y-axis components.
F,=10+4+(-4) + (-2)
F,=10+4-4-2
F =8

Step 4. Express the resultant vector.

The resultant components from the previous additions are the coordinates of th
resultant, that is,& = (10,8).

Example 2:  Determine the resultang, F .

Given: F =3dbfat ®, 10 Ibf at 90
F, =50 Ibf at © , 50 Ibf at 90
F; = 45 Ibf at 180 , 30 Ibf at 90
F,=15Ibfat 0, 50 Ibf at 270

4
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Follow the sequence used in the fiexample. Remember that x at 180 is -x°at 0, and y at
270 is -y at 90 .

30 + 50 +(-45) + 15 = 50 Ibf
10 + 50 + 30 + (-50) = 40 Ibf
50 Ibf at 0 , 40 Ibf at 90

Fy
Fy
Fr

Summary

The sequence of steps used in the component addition method of adding vectors is summarized
below.

Component Addition Method Summary
. Determine the x- and y- axes of all original vectors.
. Mathematically combine all x-axis components.
. Mathematically combine all y-axis components.
. The results are the components of the resultant vectaqy.
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ANALYTICAL METHOD OF VECTOR ADDITION

Vector components are added to determine the magnitude and direction of the
resultant. Calculations using trigonometric functions are the most accurate
method for making this determination.

EO 1.3 ADD vectors using the following methods:
C. Analytical

The graphicand components addition methods of obtaitinmeg resultant o$everalvectors
described in the previous chapters can be hard to use and time consuming. In addition, accurac
is a function of the scale used in making the diagram and how carefully the vectors are drawn. The
analytical method can be simpler and far more accurate than these previous methods.

Review of Mathematical Functions

In earlier mathematics lessotise Pythagorean Theorem was used to relate the lengths of the
sides of right triangles such as in Figdg The Pythagorean Theorem states thahynright

triangle, the square of the length of the hypotenuse equals the sum of the squares of the length
of the other two sides. This expression may be written as given in Equation 2-4.

c?2=a%?+b? or c=ya?+b? (2-4)

Figure 22 Right Triangle
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Also, recallthe three trigonometritinctions

reviewed in an earlier chapter and shown |in _

Figure23. Thecosine will be used to solve fo Sine § = % = 2

F.. Thesine will be used to solvg for F. ypOtenuse .

Tangent will normally baised to solve fof, _

although sine and cosine may also be used. Cosine g = —3djacent — _ b
hypotenuse c

On a rectangular coordinate system, the sine .

values 00 are positive (+) in quadrants l and Il Tangent § = —EZPOOCSe‘;et = %

and negativg-) in quadrants Iland1V. The )

cosine values dd are positivg+) in quadrants

| and IV and negative (-) in quadrants Il and lll. . . . _
Tangent valuesre positivg+) in quadrants | Figure 23 Trigonometric Functions
and Il and negative (-) in quadrants Il and IV.

When mathematically solving for t&in calculators will specify angles in quadrants | and IV only.
Actual anglesnay be imuadrants Il andll. Each problem should l@nalyzed graphically to
report a realistic solution. Quadrant Il and 11l angles may be obtained by adding or subtracting
180 from the value calculated.

Using the Analytical Method

To illustrate this method, consider this examplenaa walks 3 miles in one direction, then turns

9( and continues to walk for an additional 4 miles. In what direction and how far is he from his
starting point? The first step in solving this problem is to draw a simple sketch as shown in Figure
24.

90

180 0

4 miles

3 miles

270

Figure 24 Hypotenuse and Angle
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His net displacement is found using equation 2-4.
Ja? + b?
R =3 + 4

R

R =25
R = 5 miles

His direction (angle of displacement) is found using the tangent function.

tan© = opposite/adjacent
tan0 = a/b

tan0 = 4/3

tan0 = 1.33

0 =tan* 1.33

0 =53

Therefore, his new location is 5 miles at 53 from his starting point.
By carrying this approach a step further, a model has been developed for finding the resultant of

several vectors. For the purpose of developing the model, consider three forces (F ,F ,and F)
acting on an object as shown in Figure 25. The goal is to find the resultant force (F ).

Figure 25 Example Model 1

Rev. 0 Page 25 CP-02



ANALYTICAL METHOD OF VECTOR ADDITION Vectors

+Y

F3x
:
|
|
|
|
:
|
4
|
|
:
Y
____________ '-_3)/
=Y
Figure 26 Example Model 2
Step 1: Draw x and y coordinates and the three forces from the pangiafor the

center of the object, as shown in Figure 26. Component vectors and angles have
been added to the drawing to aid in the discussion.
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Step 2: Resolve each vector into its rectangular components.

Vector Angle X component y component
F, 0, F, =Fco$, F,, = Fsif,;
F, 0, F,, = F,co9, F,, = F;si,
F 0, F, = Fco8, Fsy = F3sif,
Step 3: Sum the x and y components.

Fre =2F =R, + B + K

Fry =2F, =Ry +ky + kK

Where 2" means summation
Step 4: Calculate the magnitude of F .

2 2
FR = I:Rx + I:Ry

Step 5: Calculate the angle of displacement.

F
tand = Y
I:Rx

F
0 = tanl N
Rx
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Here is an example using this model. Follow it through step by step.

Example: Given three forces acting on an object, determine the magnitude and direction of
the resultant forceF .

F, =90 Ibf at 39
F, =50 Ibf at 129
F, =125 Ibf at 250
Step 1. First draw x and y coordinate axes on a sheet of paper. Then,draw F , F,
and F from the point of origin. It is not necessary to be totally accurate

in placing the vectors in the drawing. The approximate location in the
right quadrant is all that is necessary. Label the drawing as in the model

(Figure 26).
Step 2: Resolve each force into its rectangular coordinates.

Force Magnitude Angle X component y component

F, 90 Ibf 39 E, =90 cos 39 Jf =90sin°39
F, =(90) (.777) 5 =1(90) (.629)
F,, =69.9 Ibf R, =56.6 Ibf

F, 50 Ibf 120 B, =50 cos 120 ~F =50sin 120
F,, = (50) (-.5) B, =(50) (.866)
F,, =-25 Ibf R, =43.3 Ibf

F 125 Ibf 250 B =125 cos 250 E =125sin 250
Fs = (125) (-.342) E =(125) (-.94)
F,, = -42.8 Ibf R, =-117.5 Ibf
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ANALYTICAL METHOD OF VECTOR ADDITION

Step 3:

Step 4:

Step 5:

Therefore,

Sum the x and y components.

Froc = Fic + B +

Frx = 69.9 Ibf + (-25 Ibf) + (-42.8 Ibf)
Frx = 2.1 lbf

Foy=Fy + Ry + R

Fry = 56.6 Ibf + 43.3 Ibf + (-117.5 Ibf)
Fry = -17.6 Ibf

Calculate the magnitude of F .

Fe =V(2.1F + (-17.6

F, =314.2
F, = 17.7 Ibf

Calculate the angle of displacement.
tan® = F, /R,

tan® =-17.6/2.1

tan® = -8.381

0 = tan' (-8.381)

0=-83.2

E =17.7 Ibf at -83.2 or 276.8 .

Note: A negative angle means a clockwise rotation from the zero axis.

It is left to the student to try the previoasample usinghe other methods of vectaddition
described in earlier chapters.
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Summary

The steps followed wheasingthe analyticalmethod tofind the resultant ofeveralvectors are
summarized below.

Analytical Method of Adding

Vectors Summary
. Draw x and y coordinate axes.
. Draw component vectors from point of origin.
. Resolve each vector into rectangular components.
. Sum x and y components.
. Calculate magnitude of;F .
. Calculate angle of displacement.
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Force and Motion OBJECTIVES

TERMINAL OBJECTIVE

1.0 APPLY Newton's laws of motion to a body.
ENABLING OBJECTIVES
1.1 STATE Newton's first law of motion.
1.2 STATE Newton's second law of motion.
1.3 STATE Newton's third law of motion.
1.4 STATE Newton's law of universal gravitation.
1.5 DEFINE momentum.
1.6 EXPLAIN the conservation of momentum.
1.7 Usingthe conservation of momentu@ALCULATE the velocity for an object
(or objects) following a collision of two objects.
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Force and Motion NEWTON'S LAWS OF MOTION

NEWTON'S LAWS OF MOTION

The study of Newton's laws of motion allows us to understand and accurately
describe the motion of objects and the forces that act on those objects.

EO 11 STATE Newton's first law of motion.

EOC 1.2 STATE Newton's second law of motion.

EO 1.3 STATE Newton's third law of motion.

EOC 14 STATE Newton's law of universal gravitation.

The basis for modern mechanics was developed in the seventeenth century by Sir Isaac Newton.
From his studies of objects in motion, he formulated three fundamental laws.

Newton's first law of motiostates "an object remains at rest (if originally at rest) or moves
in a straight line with constant velocity if the net force on it is zero."

Newton's second law states "the acceleration of a body is proportional to the net (i.e., sum or
resultant) force acting on it and in the direction of that net forchis law establishes the
relationship between force, mass, and acceleration and eaittee mathematically as shown

in Equation 3-1.

F = ma (3-1)
where:

F = force (Newton =1 Kg-m/séc , or Ibf)

m = mass (Kg or lbm)

a = acceleration (m/séc or ft/dec)

This law isused todefineforce units and is one of the most importamis in physics. Also,
Newton's first law is actually a consequence of this second law, since there is no acceleration wher
the force is zero, and the object is either at rest or moving with a constant velocity. Equation 3-1
can be used to calculate an objects weight at the surface of the earth. In this special case, F is tt
force, or weight, caused by the gravitational acceleratittmeagarth acting on the mass, m, of the
object. Wherdealing with this type of problem, we designate the acceleration, g, which equals
9.8m/seé or 32.17 ft/sec (gdalled gravitational accelerati@onstant). Thus, equation 3-1
becomes F = mg for this case.
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NEWTON'S LAWS OF MOTION Force and Motion

Newton's third law of motion states "if a body exerts a force on a second body, the second body
exerts an equal and opposite force on the firfhis law has also beatated as;for every
action there is an equal and opposite reaction."”

The third law is basic to the understanding of force. It states that forces always occur in pairs
of equal and opposite forces. Thus, the downward force exerted on a depkruyl &
accompanied by an upward force of equal magnitude exerted on the pencil by the desk. This
principle holds for all forces, variable or constant, regardless of their source.

One additional law attributed to Newton concerns mutual attractive forces between two bodies.
It is known as the universal law of gravitation and is stated as follows.

"Each and every masstine universe exerts a mutual, attractive gravitational
force on evenpther mass in thaniverse. For any two masses, the force is
directly proportional tothe product of théwo masseand isinversely
proportional to the square of the distance between them."

Newton expressed the universal law of gravitation using Equation 3-2.

m.m

F=G—*12 (3-2)
r2
where:
F = force of attraction (Newton = 1Kg-m/gec or Ibf)
G = universal constant of gravitation (6.673 x*10° m/kd-sec or 3.4& x 10
lbm - ft?2
slug?

m, = mass of the first object (Kg or Ibm)
m, = mass of the second object (Kg or Ibm)
r = distance between the centers of the two objects (m or ft)

Using this universal law of gravitation, we can determine the value of g (gravitational acceleration
constant), at theurface of the earth. Wareadyknow thisvalue to bed.8 m/seé (or 32.17
ft/sec), but it can be calculated using Equation 3-2.

Calculation:

First, we willassumehat the earth i;wuch larger thathe object anthat the object
resides on the surface of the earth; therefore, the value of r will be equal to the radius of
the earth. Second, we must understand that the force of attraction (F) in Equation 3-2
for the object is equal to the object's weight (F) as described in EgBdtiosetting

these two equations equal to each other yields the following.
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mass of the earth (5.95 x40 kg)
mass of the object
radius of the earth (6.367 x°.0 m)

3
TRNTENT

The mass () of the object cancels, andvidiee of(g) can be determined as follows
since a=g by substituting (g) for (a) in the previous equation.

M
g =G
r2
g = 6673x1011 m3 595X164 kg
kg seé) | (6.367x16 m)?
g=98-"

sed

If the object is a significant distance from the earth, we can demonstrate that (g) is not a
constant value but varies with the distance (altitude) from the earth. If the object is at an
altitude of 30 km (18.63 mi), then the value of (g) is as follows:

30000 m+ 6.367x16 m = 6.397x16 m

g = 6673x1011 m3 595X164 kg
kg seé) | (6.397x16 m)?

r

9.7 M
sed

«Q
Il

As you can see, a height of 30 km only changes (g) from 9.8’m/sec to 9.7 m/sec . There
will be an even smallethange for objects closer to the earth. Therefore, (g) is normally

considered a constant value since most calculations involve objects close to the surface
of the earth.
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Summary

Newton's laws of motion are summarized below.

Newton's Laws of Motion Summary
Newton's First Law of Motion

An object remains at rest (if originally at rest) or moves in a straight line wigh
constant velocity if the net force on it is zero.

Newton's Second Law of Motion

A particle with aforce acting on it has an acceleration proportional to thg
magnitude of the force and in the direction of that force.

Newton's Third Law of Motion

The forces of action and reaction between interacting bodies are equal i
magnitude and opposite in direction.

- or -
For every action there is an equal and opposite reaction.

Newton's Universal Law of Gravitation
Each and every masstime universe exerts a mutual, attractive gravitationa
force on evernpther mass in thaniverse. For anytwo masses, the force is

directly proportional to the product of thevo masseand isinversely
proportional to the square of the distance between them.
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MOMENTUM PRINCIPLES

Momentum is a measure of the motion of a moving body. An understanding of
momentum and the conservation of momentum provides essential tools in solving

physics problems.

EO 1.5 DEFINE momentum.
EO 1.6 EXPLAIN the conservation of momentum.
EO 1.7 Using the conservation of momentum, CALCULATE the

velocity for an object (or objects) following a collision of
two objects.

Momentum

Momentums a basic and widely applicable concept of physics. Itis, in a sense, the measure of
the motion of a moving body. It is the result of the product of the body's mass and the velocity
at which it is moving. Therefore, momentum can be defined using Equation 3-3.

P=mv (3'3)
where:

P = momentum of the object (Kg-m/sec or ft-lom/sec)

m = mass of the object (Kg or Ibm)

v = velocity of the object (m/sec or ft/sec)

Momentum is a vectoguantity since it results fromime velocity of the object. Hifferent
momentum quantities are to be added vectorially, the direction of each momentum must be taken
into account.However, to simplify the understanding of momentum, only straight line motions

will be considered.

Example:

Calculate the momentum for a 16 Ibm bowling ball rolling down a lane at 22 ft/sec.
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Solution:
P=mv
P - (16 Ibm{ 22 i)
secC
p - g5oft oM
sec

Force and Momentum

There is a direct relationship between force and momentum.rald@twhich momentum
changes with time is equal to the net force applied to an object. This relationship comes directly
from Newton's second law of motidh= ma. This is a special case of Newton's second law for

a constant force which gives rise to a constant acceleration. The linking fact is that acceleration
is the rate at which velocity changes with time. Therefore, we can determine the following:

We know thatF = ma

vV -V
and sincea = g
(t-t)
V -V
then,F = ° (3-4)
t -t
_ . mv - mv
which can also be writtef;, = — ° (3-5)
“ o
- P-P,
Substituting P for mv and,P for mF, = _—
“ o
orF = AP (3-6)

At

From Equation 3-6, wean determinehiat force (F) iqual to the change momentum per
time.
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Example:
The velocity of a rocket must be increased by 110 ft/sec to achieve proper orbit around
the earth. If the rocket has a mass of 5 tons and it takes 9 sec. to reach orbit, calculate
the required thrust (force) to achieve this orbit.

Solution:

Even though the initial velocity (v ) and final velocity (v) are unknown, we do know the
change in velocity (v;v ), which is 110 ft/sec. féfere, using Equation 3-4 we can find

the solution.
F ) ”-{ )
F = 10000 IbnE 110 ﬁ/Se(j
9 sec
F=12x10 ft—lom

Conservation of Momentum

One of the most useful properties of momentum is that it is conserved. This means that if no net
external force acts upon an object, thementum ofthe objectemainsconstant. Using
Equation 3-6, we can see that if force (F) is equal to zeroARen0. It is most important for
collisions, explosions, etc., whahee external force is negligible, and states that the momentum
before the event (collision, explosion) equals the momentum following the event.

The conservation of momentum applies when a bullet is fired from a gun. Prior to firing the gun,
both the gun and theullet are at rest (i.e., and Y arezero),and therefore theotal
momentum is zero. This can be written as follows:

MgVg + MgV = 0

When the gun is fired, themomentum ofthe recoiling gun is equal andpposite to the
momentum of the bullet. That is, the momentum of the bullet;(m v ) is equal to the momentum
of the gun (g ¥ ), but of opposite direction.
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The development of thew of conservation of momentutimes notconsider whether the
collision is elastic or inelastic. In an elastic collision, both momentum and kinetic energy (i.e.,
energy due to an objects velocity) are conserved. A common example of an elastic collision is
the head-on collision of two billiard balls of equal mass. In an inelastic collision, momentum is
conserved, but system kinetic energy is not conserved. An example of an inelastic collission is
the head-omollision oftwo automobiles wherpart of theinitial kinetic energy is lost as the

metal crumples durinthe impact. The concept kihetic energy will be discussed further in
Module 5 of this course.

The law of conservation of momentum cannteghematicallyexpressed in severdifferent

ways. In general, it can be stated that the sum of a system's initial momentum is equal to the sum
of a system's final momentum.

Z Pinitial = Z Pinal (3-7)

In the case where a collision of two objects occurs,ahsezrvation of momentum can be stated
as follows.

Pl initial + I:)Zinitial = 1 final + Eﬁnal (3'8)
or
(M V)inisar + (Moo )initiar = (MM e + (MY Jinay (3-9)

In the case where two bodies collide and have identical final velocities, equation 3-10 applies.

myv; + myv, = (m +m)y (3-10)

For example, consider two railroad cars rolling on a level, frictionless track (see Figure 1). The
cars collide, become coupled, and roll together at a final velogity (v). The momentum before
and after the collision is expressed with Equation 3-10.

Before After
v, 2 vf
m my
[ 10 I ] I [T 10
[OIONENO]I0) [OIOMENOIO) [OIOMEOIOEEOIOMENOIO)
m, v, + m,v,= (m,+ m,)v,

Figure 1 Momentum
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If the initial velocities of the two objects,(v angd v ) are known, then the final velogity (v) can
be calculated by rearranging Equation 3-10 into Equation 3-11.

myv, + mV
v, = 11 22 (3-11)
m, +m,

Example:
Consider that the railroad cars in Figure 1 have masses of m = 2300 Ibm and
m, = 2800 Iom. The first car (m) is moving atedocity of 29 ft/sec and the second car
(m,) is moving at a velocity of 1ft/sec. The first car overtakes the second car and
couples with it. Calculate the final velocity of the two cars.

Solution:

The final velocity (v) can be easily calculated using Equation 3-8.

_omyv; +myv,
v, = —————==
m, +m,
v, - (2300 Ibm)(29 ft/sec)+ (2800 Ibm)(11 ft/sec)
f 2300lbm + 2800 Ibm
v, = 19.1 ft/sec
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Summary

The concepts of momentum and the conservation of momentum are summarized below.

Momentum Summary
Momentum is the measure of the motion of a moving body. Itis
the result of the product of the body's mass and the velocity at
which it is moving. Therefore, momentum can be defined as:

P=mv.

The conservation of momentum states that if no net external
force acts upon a system, the momentum of the system remains
constant. If force (F) is equal to zero, thdgn = 0.

The momentum before and after a collision can be calculated
using the following equation.

(MyVa)inigar + (Mo Vo i = (M it + (MY Yl
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Application of Newton's Laws OBJECTIVES

TERMINAL OBJECTIVE

1.0 From memoryAPPLY the principles of force to stationary or moving bodies.
ENABLING OBJECTIVES
1.1 DEFINE the following:
a. Force
b. Weight
1.2  STATE the purpose of a free-body diagram.
1.3  Given all necessary informatiddONSTRUCT a free-body diagram.
1.4  STATE the conditions necessary for a body to be in force equilibrium.
1.5 DEFINE the following:
a. Net force
b. Equilibrant
1.6  DEFINE the following:
a. Tensile force
b. Compressive force
C. Frictional force
1.7 EXPLAIN the difference between a static-friction force and a kinetic-friction force.
1.8 STATE two factors that affect the magnitude of the friction force.
1.9 EXPLAIN the difference between centripetal force and centrifugal force.
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FORCE AND WEIGHT

Force can be thought of simply as a puslpolt, but is more clearly defined as
any action on a body that tends to change the velocity of the body. Weight is a
force exerted on an object due to the object's position in a gravitational field.

EOC 11 DEFINE the following:
a. Force
b. Weight
Introduction

In the study of forces, the student must make valid assumptions called for in the formulation of
real problems. Thability to understand and make usetbé correcassumptions in the
formulation and solution of engineering problems is certainly one of the most important abilities
of a successful operatoOne of the objectives dfiis manual is t@rovide an opportunity to
develop this ability through tretudy of the fundamentals and the analysis of practical problems.

An effective method of attack on all engineering problems is essential. The development of good
habits in formulating problems and in representing their solutionsraase to be a valuable asset.

Each solution should proceed with a logical sequences stom hypothesis to conclusion, and

its representation shoulmclude a clearstatement of thdollowing parts, each clearly

defined: a) given data, b) results desired, ¢) necessary diagrams, d) calculations, and e) answer:
and conclusions. Many problems become clear and straightforward once they are begun with a
logical and disciplined method of attack.

In addition, it is important to incorporate a series of checks on the calculations at intermediate
points in the solution. Also, all work must be neat and orderly.

The subject of classical physics is based on surprisingly few fundamental concepts and involves
mainly the application of these basic relations to a variety of situations. Newton's laws of motion
are some of the fundamental concepts used in the study of force and weight.
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Force

Forceis defined as a vector quantity that tends to produce an acceleration of a body in the direction
of its application. Changing the body's velocity causes the body to accelerate. Therefore, force can
be mathematically defined as given by Newton's second law of motion (Equation 4-1).

F = ma (4-1)
where:

F = force on object (Newton or Ibf)

m = mass of object (Kg or lbm)

a = acceleration of object (m/dec or ftisec)

Force is characterized by its point of application, its magnitude, and its direction. A force that is
actually distributed over a small area of the body upon which it acts may be considered a concentrated
force if the dimensions of the area involved are small compared with other pertinent dimensions.

Two or more forces may act upon an object without affecting its state of motion. For example, a
book resting upon a table has a downward force acting on it caused by gravity and an upward force
exerted on it fronthe table top. Thegwo forces cancel antthe net force of the book is zero.

This fact can be verified by observing that no change in the state of motion has occurred.

Weight

Weightis a special application te concept of force. It tefined aghe force exerted on an
object by the gravitational field of the earth, or more specifically the pull of the earth on the body.
mg

= = (4-2)
9
where:
W = weight (Ibf)
m = mass (Ibm) of the object
g = the local acceleration of gravity (32.17 ftfsec )
0. = a conversion constaemployed to facilitatéhe use of Newton's secolaiv of

motion with the English system of units and is equal to 32.17 ft-lom/Ibf-sec

Note that ghas the same numerical value as the acceleration of gravity at sea level.
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The mass of a body is the same wherever the body is, whether on the moon or on the earth. Tl
weight of a body, however, depends upon the local acceleration of gravity. Thus, the weight of ar
object is less on the moon than on the earth because the local acceleration of gravity is less on t
moon than on the earth.

Example:

Calculate the weight of a person with a mass of 185 lbm.

w = M9
9

(185 Ibm) 32.17
seé

ft-lbm
Ibf -sec

32.17

185 Ibf

Example:

Calculate the weight of a person with a mass of 185 Ibm on the moon. Gravity on
the moon is 5.36 ft/séc .

w - M9
9%

(185 Ibm{ 5.36 i)
sed

ft-lbm
Ibf -sed

32.17

28.19 Ibf
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With the idea of mass and weighinderstood,especiallytheir differencesthe concept of
gravitational force is more easily explained. Any object that is dropped will accelerate as it falls,
even though it is not iphysicalcontactwith any other body. Toexplainthis, theidea of
gravitational force was developed, resulting in the concept that one body, such as the earth, exerts
a force on another body, even though they are far apart. The gravitational attraction of two objects
depends upon the mass of each and the distance between tiiecon€ept is known as Newton's

law of gravitation, which was introduced in an earlier chapter.

Summary

The important concepts of force and weight are summarized below.

Force and Weight Summary

. Force is a vector quantity that tends to produce an acceleration of a|pody
in the direction of its application.

or
F=ma

. Weight is the force exerted on an object due to gravity. (On the earth|it is
the gravitational pull of the earth on the body.)

W = mg/g
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Application of Newton's Laws FREE-BODY DIAGRAMS

FREE-BODY DIAGRAMS

In studying the effect of forces on a body it is necessary to isolate the body and
determine all forces acting upon it. This method of using a free-body diagram is
essential in understanding basic and complex force problems.

EO 1.2 STATE the purpose of a free-body
diagram.
EO 1.3 Given all necessary information, CONSTRUCT a

free-body diagram.

In solving a problem involving forces it is essential that Newton's laws are carefully fixed in
mind andthat theserinciples are applied literally and exactly. In applying these principles

it is essential that the body be isolated from all other bodies so that a complete and accurate
account ofall forceswhich act onthis bodymay beconsidered. The diagram of such an
isolated body with the representation of all external forces acting on it is cellee-Body
Diagram It has long been established that the free-body-diagram method is the key to the
understanding of engineering problems. This is becauselti#ois of a body is the tool that
clearly separates cause and effect and focasesttention to thditeral application of a
principle.

Example:

Consider the book resting on the table in Figure 1. Althoughdbk is
stationary, two forces are acting on the book to keep it stationary. One is the
weight (W) of the book exerting a force down on the table. The other is the
force exerted up by the table to hold the book in place. This force is known
as the normal force (Ngnd is equal to the weight of theok. Anormal

force is defined as arperpendicular force wittvhich anytwo surfaces are
pressed against eadther. Thefree-body diagram for this situation,
illustrated onthe rightside in Figure 1, isolatedhe bookand presents the
forces acting on the object.
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FREE-BODY DIAGRAMS Application of Newton's Laws

Book Resting on a Table

Figure 1 Book on a Table

Constructing a Free-Body Diagram

In constructing a free-body diagram the following steps are usually followed.

Step 1.

Step 2.

Step 3.

Step 4.

Determineshich body or combination of bodies is to be isolated. The body
chosen will usually involve one or more of the desired unknown quantities.

Nextjsolate the body ocombination of bodies chosen with a diagram that
represents its complete external boundaries.

Represeatl forces that act on the isolated body as applied by the removed
contacting and attracting bodies in their proper positions in the diagram of the
isolated body. Do not show the forces that the object exerts on anything else,
since these forces do not affect the object itself.

Indicate thehoice of coordinate axelrectly onthe diagram. Pertinent
dimensions may also be represented for convenience. Note, however, that the
free-body diagram servéise purpose diocusing accurate attention on the
action of the external forces; therefore, diegram shoulaot becluttered
with excessive information. Force arrows should be clearly distinguished from
other arrows to avoid confusiortor this purpose coloreg@encils may be
used.

CP-04
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Application of Newton's Laws FREE-BODY DIAGRAMS

When these steps are completed a correct free-body diagram will result, and the student can
apply the appropriate equations to the diagram to find the proper solution.

Example:

The car in Figure 2 is being towed by a force of some magnitude. Construct
a free-body diagram showing all the forces acting on the car.

F app

- O —_—
Direction Of ——
Acceleration

Figure 2 Car

Solution:

Following the steps to construct a free-body diagram (shown in Figure 3), the
object (the car) is chosen and isolatédl. the forces acting on the car are
represented with proper coordinate axes. Those forces are:

The force applied to tow the car

- The frictional force that opposes the applied force due to the
weight of the car and the nature of the surfaces (the car's tires
and the road)

w - The weight of the car

N - The normal force exerted by the road on the car

=

app
K
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FREE-BODY DIAGRAMS Application of Newton's Laws

o F app
=

Figure 3 Free-Body Diagram

The frictional force (k) is a force that opposes direction of motion. Thidorce is
explained in more detail in the chapter on types of forces.

To solve this practical problem, the student would assign values for each force as determined
by data given in the problem. After assigning a sign convention (e.g., + for forces upward and
to the right, - for forces downward and to the left), the student would sum all forces to find
the net force acting on the body. Using this net force information and appropriate equations,
the student could solve for the requested unknowns. A variation wouldhaeddhe

student find an unknown force acting on the body given sufficient information about the other
forces acting on the body. The student will learn to solve specific examples using free-body
diagrams in a later chapter.

Some advanced free-body diagrams for various types of systems are shown in Figure 4.
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Application of Newton's Laws

FREE-BODY DIAGRAMS

SAMPLE FREE—BODY DIAGRAMS

Mechanical System

Free—Body Diagram of Isoclated Body

1. Plane truss

Weight of truss
assumed negligible
compared with P

Ax€ﬁ

A
L.

A B
Ay ?
2. Cantilever beam
F3 Fo Fy F3 Fo Fy
Ny v Ny
F |
A Mass m y i y

3. Beam

Smooth surface

contact at A. 4

MGS

P
/\

4. Rigid system of interconnected
bodies analyzed as a single unit

Weight of mechanical

pe-—an
\\ neglected
m
B

%A

pe—o

Figure 4 Various Free-Body Diagrams
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FREE-BODY DIAGRAMS Application of Newton's Laws

Summary

The concept of the free-body diagram is summarized below.

Free-Body Diagram Summary

. A free-body diagram isolates a body and illustrates all the forces that act on the body
so that a complete and accurate account of all of those forces may be considered.

. Four steps must be performed to construct a free-body diagram:
- Determine the body or combination of bodies to be isolated.

- Isolate the body ocombination of bodies with a diagrahat represents the
complete external boundaries.

- Representll forces that act on thisolated body in theiproperpositiong
within the diagram.

- Indicate the choice of coordinate axes directly on the diagram.
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Application of Newton's Laws FORCE EQUILIBRIUM

FORCE EQUILIBRIUM

Knowledge of the forces required to maintain an object in equilibrium is essential in
understanding the nature of bodies at rest and in motion.

EOC 14 STATE the conditions necessary for a body to
be in force equilibrium.

EO 1.5 DEFINE the following:
a. Net force

b. Equilibrant

Net Force

When forces act on an object, the resudly be ahange in the objectsate of motion. If
certain conditionsare satisfied, howeverthe forcesnay combine to maintain atate of
equilibrium or balance.

To determine if a body is in equilibrium, the overall effect of all the forces acting on it must be
assessed. All the forces that act on an object result in essentially one force that influences the
object's motion. The force which results from all the forces acting on a body is defined as the
net force It is important to remembdat forces are vector quantities. hgv analyzing

various forces you must account for both the magnitude (displacement) of the force as well as
the direction inwvhichthe force is applied. As described in the previous chdbigis best

done using a free-body diagram.

To understand this morelearly, considethe bookresting on the table in section A of
Figure 5.
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FORCE EQUILIBRIUM Application of Newton's Laws

Fapp N
—= — -
C D ( )
Fapp
W
Equilibrium Not in Equilibrium W = N (No friction)
FNeT = O FneT = Fape # O oo FNET = Faep

(A) (8) ()

Figure 5 Net Force

The book remains stationary resting on the table because thexettea normal force upward

equal to the weight of thHeook. Therefore, the net force on the book is zero. If a force is
applied to the book (section B of Figure 5), and the effect of friction is neglected, the net force
will be equal to the applieidrce, and the book will move in the direction of the applied force.
The free-body diagram in section C of Figure 5 showsthigaiveight (W) of théook is
canceled by the normal force (N) of the table since they are equal in magnitude but opposite in
direction. The resultant (net) force is therefore equal to the applied fggge (F ).

Equilibrium

Since an object in equilibrium is considered to be in a state of balance, it can be surmised that
the net force on the object is equaksro. That is, if the vector sum of all the forces acting
on an object is equal to zero, then the object is in equilibrium.

Newton's first law of motion describes equilibrium and the effect of force on a body that is in
equilibrium. Thatlaw states'An objectremains atest(if originally atrest) ormoves in a
straight line with a constant velocity if the net force on it is zero." Newton's first law of motion
is also called the law of inertidnertia is the tendency of a body to resist a change in its state
of motion.
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Application of Newton's Laws FORCE EQUILIBRIUM

The first condition okquilibrium, aconsequence of Newton's first lawvay bewritten in
vector form, "A body will be in translational equilibrium if and onlyhié vector sum of forces
exerted on a body by the environment equals zero."

For example, if three forces act on a body it is necessary for the following to be true for the
body to be in equilibrium.

F,+F +F =0 (4-3)

This equation may also be written as follows.

YF =0 (4-4)

This sum includesll forces exerted on the body by its environment. vidreshing of this
vectorsum is a necessary condition, callee first condition o&quilibrium, that must be
satisfied in order to ensure translational equilibrium. rgetidimensionsx(y,2, the component
equations of the first condition of equilibrium are:

YF, =0 YR, =0 YF, =0 (4-5)

This condition applies to objects in motion witbnstant velcity and to bodies at rest or in
static equilibrium (referred to as STATICS).

Applying the knowledge that an objectaguilibrium has anet force equal taero, the
following example can be solved:

Example:

The object in Figure 6 has a
weight of 125 Ibf. The object
is suspended by cables 4s
shown. Calculate the tension
(T, in thecable at 30 with
the horizontal. IE

Figure 6 Hanging Object
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FORCE EQUILIBRIUM Application of Newton's Laws

The tension in a cable is the force transmitted by the cable. The tension at any point in the cable
can be measured by cutting a suitable length from it and inserting a spring scale.

125 Ibf

Figure 7 Free-Body Diagram

Solution:
Sincethe object and its supporting cables are motionless (igguihibrium), weknow
that the net force acting on the intersection of the cabkesads The fact that the net
force is zerdells us hat thesum ofthe x-components of, T ,,T ,and T is zero, and the
sum of the y-components of T, T, angd T is zero.

ZFX=T1X+T2X+T3X=O
ZFy=T1y+T2y+T3y=O

The tension T is equal thhe weight of the object, 126f. The x andy components of the
tensions can be found using trigonometry (e.g., sine function). Substituting known values into the
second equation above yields the following.

YF, = (T, sin30°) + (T, sin180)) + (T, sin270) = 0
(T)(0.5) + (T,)(0) + (125 Ibf)(-1) = O

0.5T, - 125 Ibf = O
0.5T, = 125 Ibf
T, = 250 Ibf

A simpler method to solve this problenvolves assigning a sign conventionthe free-body
diagram and examining the direction of the forces.
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Application of Newton's Laws FORCE EQUILIBRIUM

By choosing(+) as the upwardirection and(-) as the downward direction, the student can
determine by examination thatthe upward component of T is + T sirf30, 2) the tension T
is -125 Ibf,and 3) T has ng- component. Therefore, usitige same equation as before, we
obtain the following.

ZFy = (T,sin30 °) -1251Ibf =0
0.5 T, = 125 Ibf
T, = 250 Ibf

1
If the sum ofall forces acting upon a body is equalz&ro, thatbody is said to be in force
equilibrium. If the sum of all the forces is mmjual to zero, any force or system of forces capable
of balancing the system is defined agquilibrant

Example:

A 2000 Ibm car is aceslating (on a frictionless surface) at a rate of 2 ft-sec. What force
must be applied to the car to act as an equilibrant for this system?

Solution: a. Draw a free-body diagram.
N
A
F 4,% = ® W F,=?
\_/ \
J
W

Figure 8 Free-Body Diagram

b. A Force, F, MUST be applied in the opposite directionto F such that the
sum of all forces acting on the car is zero.

) Forces=F, +F, +N+W=0
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FORCE EQUILIBRIUM Application of Newton's Laws

C. Since the caremains orthe surface, forces N and W are in equal and
opposite directionsForce 5 must bapplied in an equal and opposite
direction to F in order for the forces to be in equilibrium.

F, = F, = @ _ (2000ibm x 2ftsed) + 32.17 S 12M
0. Ibf -sec
= 124 Ibf
Summary
The concepts presented in this chapter are summarized below.
Force Equilibrium Summary
. The force that is the resultant force of all forces acting on a body is defingd as
the net force.
. If the vector sum of all the forces acting on an object is equal to zero, thep the
object is in equilibrium.
. The first condition ofequilibrium isstated as folls: "A body will be in

translational equilibrium i&ndonly if the vectoisum of forcegxerted on a
body by the environment equals zero."

F,+FR+F =0
or
>F=0
. Any force or system of forces capablebafancing a system gbat the net

force is zero is defined as an equilibrant.
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Application of Newton's Laws TYPES OF FORCE

TYPES OF FORCE

When determinindnpow anobject reacts to a force or forces, it is important to
understand the different types of forces that may act on the object.

EOC 1.6 DEFINE the following:
a. Tensile force
b. Compressive force
C. Frictional force
EO 1.7 EXPLAIN the difference between a static-frictionforce and a

kinetic-friction force.
EOC 1.8 STATE two factors that affect the magnitude of the friction force.

EOC 19 EXPLAIN the difference between centripetalorce and
centrifugal force.

The previous section discussed the equilibrium of forces as they act on bodies. Recalling that
a force is defined as\aector quantitythat tends to produce acceleration of a body in the
direction of its application, it is apparghtt the student must be acquainted with the various
types of forces that exist mrder to construct a corretree-body diagram and apply the
appropriate equation. A force is applied either by direct mechanical contact or by remote action.

Tensile and Compressive Forces

In discussing the types of forces, a simple rule is used to determine if the force is a tensile or a
compressive force. If an applied force on a member tends to pull the member apart, it is said to
be intension If a force tends to compress the member, it@®@mpression It should also be
mentioned that ropes, cables, etc., that are attached to bodies can only support tensile loads, and
therefore such objects are in tension when placed on the free-body diagram. In addition, when
a fluid is involved, it should benderstood thafluid forces are almosilways compressive

forces.

Friction

Another type of force often used in classical physics is the force resulting from two surfaces in
contact, where one of the surfaces is attempting to move parallel to or over the other surface.
Such forces are referred tofastion forces There are two types of friction forces: those due

to dry friction, sometimes called Coulomb friction, and those resulting from fluid friction.
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TYPES OF FORCE Application of Newton's Laws

Fluid friction develops between layers of fluid moving at different velocities. This type of frictional
force is used in considering problems involving the flow of fluids through pipes. Such problems are
covered in the Fundamentals Manual on fluid flow. In this section, problems involving rigid bodies
which are in contact along dry surfaces are considered.

The laws of dry friction are best understood by the following experiment. A block of weight W is
placed on a horizontal plane surface (see Figure 9). The forces acting on the block are its weight
W and the normal force N of the surface. Since the weight Hasrizontal component, the normal

force of the surface also has no horizontal component; thereactherefore normal to the surface

and is represented by N in part (a) of the figure. Suppose now, that a horizontal force P is applied
to the block (see part (b)). If P is small, the block will not move. Some other horizontal force must
therefore exist which balances P. This other force is the static-friction force F, which is actually the
resultant of a great number of forces acting over the entire surface of contact between the block and
the plane. The nature of these forcasoisknown exactlyput it isgenerally assumetiat these

forces are due to the irregularities of the surfaces in contact and also to molecular action.

W W
| | F Equilibrium: Motion
l l '
|
P o - Fm
'__
k
/ % / |
F |
|
|
N N |
P
(a) (b) (c)

Figure 9 Frictional Forces

If the force P is increased, tlfiiction force F also increases, continuingagpose Puntil its
magnitude reaches a certain maximum vajyésEe part (c) of Figure 9). If P is further increased,

the friction force cannot balance it any more, and the block starts sliding. As soon as the block has
been set in motion, the magnitude of F drops frgm F to a lower value F . This is because there is
less interpenetration between the irregularities of the surfaces in contact when these surfaces move
with respect to one another. From then on, the block keeps sliding with increasing velocity (i.e., it
acceleratesyvhile thefriction force,denoted by f andalledthe kinetic-friction force remains
approximately constant.
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Application of Newton's Laws TYPES OF FORCE

Experimental evidencehows that themaximum value F, ofthe static-friction force is
proportional to thenormal component N dhe reaction of the surface, as shown in Equation
4-5.

Ry = M N (4-5)

The term Y is a constant called the coefficient of static friction. Similarly, the magnitude F of
the kinetic-friction force may be expressed in the following form.

Fe = B N (4-6)

The term | is @onstant called the coefficient of kinetic friction. The coefficients of friction,

Ms and |k , do not depend upon the area of the surfaces in contact. Both coefficients, however,
depend strongly on the nature of the surfaces in contact. Since they also depend upon the exact
condition of the surfaces, their value is seldom known with an accuracy greater than 5 percent.
It should be noted thdtictional forcesare alaysopposite in direction to the motion (or
impending motion) of the object.

Centripetal Force

An object moving at constant speed in a cirgle
is not in equilibrium. Although the magnitude
of the linear velocity is notchanging, the
direction of velocity is continually changing
Since a change in direction requirgs
acceleration, an objechoving in a circular
path has a constant acceleratiowards the
center of the circular path.

Recdling Newton's second law of motion, F 3
ma, a force is required to cause acceleratipn.
Therefore, to have constant acceleration towards
the center of the circular path, there must be a|net
force acting towards the center. This forcel|is
known as centripetal force. Without this force, an
object will move in a straight line. Figure 1
llustrates the centripetal force. Figure 10 Centripetal Force
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TYPES OF FORCE Application of Newton's Laws

Centrifugal Force

Another force,which appears
to be opposite the direction of
motion, is the centrifugal force
acting on an object that followg
a curved path. This force

appears to be a force directed
away fromthe center of the

. .. Centripetal Apparent
circular path. This is actually 8 force cem{trifugo\
orce

fictitious force, but is an
apparent force that is used tp
describe the forces present due
to an object's rotation.

To better understand
centripetal and centrifugal
forces, consider that a string is Figure 11 Centrifugal Force

attached to thplane in Figure

10. As the plane rotates about the center, the string places a centripetal force on the plane. This
causes the plane's velocity to change in direction, thus causing it to travel in a circle.

The apparent outward force
centrifugal force, seems to pu ¢
the plane away from the cente —
shown in Figure 11. This is thq
sameapparent outward force
one feels when riding in a car
when the car travels in a circle.
It can be proven that
centrifugal force is not an
actual force by cutting the
string. In doingso, theplane
will fly off in a straight line that
is tangent to the circle at the
velocity it hadthe moment the
string was cut. If there were an
actual centrifugal force present,
the plane would not fly away in Figure 12 Loss of Centripetal Force
a linetangent to the circle, but

would fly directly away from

the circle (see Figure 12).

Centripetal force
goes to zero
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Application of Newton's Laws

Summary

The concepts of this chapter are summarized below.

Types of Force Summary
A tensile force is an applied force that tends to pull an object apart.
A compressive force is an applied force that tends to compress an object

Frictional force is the force resulting from two surfaces in contact, where of
the surfaces is attempting to move with respect to the other surface.

Static-frictional forces are thodgctional forcespresent when an object i
stationary, whereas kinetic-frictional forca® thosédrictional forces present
between two objects that are moving.

The magnitude of the frictional force is affected by the following:

- Weight of the object being moved

- Type of surface on the object being moved

- Type of surface on which the object is moving.

Centripetal force is the force on an objeutving in a circulapath that is
directed towards the center of the path, whereasehg&ifugal force is the

fictitious force hat appears to be directadiay fromthe center of the circular
path.
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Energy,

Work, and Power OBJECTIVES

TERMINAL OBJECTIVE

1.0  Given necessary information about a sys@alL,CULATE the work performed
and/or power produced or used by that system.
ENABLING OBJECTIVES
1.1 DEFINE the following terms:
a. Energy
b Potential energy
C. Kinetic energy
d. Work
e Power
1.2  STATE the mathematical expression for:
a. Potential energy
b. Kinetic energy
C. Work
d Power
1.3  For a mechanical syste@ALCULATE energy, work, and power.
1.4  STATE the First Law of Thermodynamics, "Conservation of Energy."
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Energy, Work, and Power ENERGY AND WORK

ENERGY AND WORK

Energy is the measure of the ability to do work or cause a change. Work is a
measure of the amount of energy required to move an object.

EO 11 DEFINE the following terms:
a. Energy
b. Potential energy
C. Kinetic energy
d. Work

EOC 1.2 STATE the mathematical expression for:
a. Potential energy
b. Kinetic energy
C. Work

EO 1.3 For a mechanical system, CALCULATE energy, work, and
power.

Energy

Energyis defined as the measure of the ability to do work. Energy determines the capacity of
a system to perforrwork and may bestored invarious forms. Some of the mdoasic
mechanical systems involve the concepts of potential and kinetic energy. Both of these terms
will be explainedmorefully later in this chapterMore advanced systenmsayincludeother

types of energy such as chemical, electromagnetic, thermal, acoustic, and nuclear. A piledriver
hammer performwork byvirtue of itsfalling motion. Coal burned infassil-fueledpower

plant is undergoing energy release by enubalreaction. Fuel elements in a nucleaower

reactor produce energy by a nuclesaction. For the purposes of this course, our discussions
will be limited to mechanicadnd thermal forms of energg.g., heat). It should be noted,
however, that the principles involved with energy calculations are similar for all types of energy.

Both thermal and mechanical energy can be separated into two categories, transient and stored.
Transient energy is energy in motidhatis, energy beingransferred from one place to
another. Stored energy is the energgitained within a substanceabject. Both of these
categories of energy will be discussed in this module.

Potential Energy

Potential energys defined as the energy stored in an object because of its position. An example
is the potential energy of an object abtwe surface of the earth in the earth's gravitational
field. Potential energy also applies to enatgg to separation of electrical charge and to
energy stored in a spring, in other words, energy due to position of any force field.
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ENERGY AND WORK Energy, Work, and Power

As an example, considdre energy stored imydrogen and oxygen as potential energy to be
released on burning. Burning changes their relative separation distance from the elemental form
to the compound form as water releases the potential energy.

When discussing mechanigabtential energy, we look at the position of an object. The
measure of an object's position is its vertical distance above a reference point. The reference
point is normally the earth's surface, ban it be any point. The potential energy of the object
represents thevork required to elevate the objectttat position from theeference point.
Potential energy is mathematically represented by Equation 5-1.

mgz

PE = work to elevate = weight x height—== (5-1)
C
where:
PE = potential energy in ft-Ibf
m = massinlbm
g = 3217 ft/set
g. = 32.17 (Ibm-ft)/(Ibf-set )
z = height above a reference in ft

It should be noted the.g is used only when using the English system of measurement.

Example: What ighe potential energy of a #m object suspended 10 feet above the
ground?
pEg - Mgz _ (50 lbm)| (32.17 ft| ( 10 ft lbf -seé
9. 1 se@ 1 32.17 lbm-ft
Answer: PE = 500 ft-Ibf

Kinetic Energy

Kinetic energy is defined as the energy stored in an object because of its motion. If you have
a baseball in your hand, it has no kinetic energy because it is not moving. But if you throw the
ball, your hand has provided energy to give the ball motion. When you release the ball, it leaves
your hand at some velocity. The energy you have given the ball will determine the velocity of

the ball. Because the kinetic energy is duta¢omotion of the object, and motion is measured

by velocity, kinetic energy can be calculated in terms of its velocity, as shown below.

KE = MV° (5-2)
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where:
KE = Kkinetic energy in ft-Ibf
m = massinlbm
v = velocity in ft/sec
g. = (32.17 lbm-ft)/(Ibf-set )
Example: What is the kinetic energy of a 10 Ibm object that has a velocity of 8 ft/sec?
kg - mv2 _ (10 lbm) (8 ft) *| Ibf-sed
29, 2 sec 32.17 lbom-ft
2 _
KE = (5 Ibm) 64 ft Ibf -seé
se@ 32.17 lbm-ft
Answer: KE = 9.95 ft-Ibf

The kinetic energy of an object represents the amount of energy required to increase the
velocity ofthe object from rest (v = 0) to its final velocity, or the work it can do as it pushes
against something in slowing down (waterwheel or turbine, for example.)

Thermal Energy

Thermal energys that energy related to temperature (the higher the temperature, the greater
the molecular movement, and the greater the energy). If one object has more thermal energy
than an adjacent substance, the substance agjttee temperature will transfer thermal energy

(at a molecular level) tthe other substance. Note that the energy is moving from one place
to another (it is in motion) and is referred to as transient energy or, more commonly in the case
of thermal energy, heat.

The only stored energy in a solid material is internal energy. Internal enéngyasergy
stored in a substance because of the motion and positioa pérticles of the substance. Heat
and internal energy will be caesl in the Fundamentals Manual on Heat Transfer, Fluid Flow,
and Thermodynamics.

Mechanical Energy

Mechancal energyis energy related to motion or position. Transmeathanical energy is
commonlyreferred to as workStoredmechanical energy existsame of two forms: kinetic
or potential. Kinetic and potential energy can be found in both fluids and solid objects.
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Work

Work is commonlythought of asny activity requiringexertion. However, thdefinition in

physics is much more specifit¢vorkis done by a force acting on a moving object if the object
has some component of motion in the direction of the force. Work can be done BY a person,
a machine, or an object by applying a force and causing something to move. More specifically,
work is done by a force acting on a moving object if the object has some component of motion
in the direction of the force. Work can be done ON an object by applying a force that causes
it to move. For example, if you push on a box (apply a force) and it moves three feet, work has
been performed BY you to the box, while work has been performed ON the box. If you push
on the box and it does notove, therwork, by ourdefinition, hasot beeraccomplished.

Work can be defined mathematically by Equation 5-3.

W=Fxd (5-3)
where:

W = work done in ft-Ibf

F = force applied to the object in Ibf

d = distance the object is moved (in ft.) with the force applied
Example: You push a large box for threautes. During that time, you exert a constant

force of 200bf to the box, but it doesot move. How muchwork has been
accomplished?

W = Fxd
W = 200 Ibfx 0 ft
W = O ft-Ibf work done

Remember that if no movement is achieved, no work has been accomplished. Even if you feel
fatigued, no work has been done. Work can be thought of as what has been accomplished. If
nothing is accomplished, then no work has been done.

Example: You push the same box as mentioned above. You apply a horizontal force of
200 Ibf tothe box, and the box moves five feet horizontally. How much work
have you done?

W = Fxd
W = 200 Ibfx5ft
W = 1000 ft-Ibf

In this case, workan be described asrk done by the persgoushingthe box or work
performed on the box. In either case, the amount of work is the same.
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Summary

The main points covered in this chapter are summarized below.

Energy and Work Summary
. Energy is the ability to do work.

. The work done by a force on an object is the product of the force and thie
distance the object moves in the direction of the force.

. Kinetic energy is the energy an object has because of its motion.
mv? 1 2

. KE = —— or KE==mv
29, 2

. Potential energy is the energy of an object due to its position.

. pE - 92
9
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LAW OF CONSERVATION OF ENERGY

Energy does not simply appear and disappeaerdgnis transferred from one position
to another or transformed from one type of energy to another.

EOC 14 STATE the First Law of Thermodynamics, "Conservation
of Energy."

Conservation of Energy

The First Law of Thermodynamics is simply stated "energy cannot be created or destroyed, only
altered in form." In the previous chapter, we discussed potential energy, where a force is applied
to an object, raising it from some point of origin to some height. The energy expended in raising
the object is equivalent to the potential energy gained by the object because of its height. This
is an example of &#ansfer of energy asell as aralteration of the type of energy. Another
example ighrowing a baseballWhile the ball is in your hand, it contains kioetic energy.

You apply a force to the ball by throwing it. The ball leaves your hand with a velocity, giving

it kinetic energy equal to the work applied by your hand. Mathematically, this can be described
by the following simplified equation.

Energ){ﬂtial + EnergMded - Energé(noved = Ene\'i‘lgy (5_4)

where:

Energy,,, IS energy initiallgtored in an object/substanc&his energy can exist in
various combinations of kinetic energy and potential energy.

Energy.q IS energy added to the object/substance. Heat can be added. Energy can be
added in the form of stored energy in any mass added, such as water to a fluid system.
Work can be done on a system. Heat is energy gained or lost at a micresebpic

Work is the same at a macroscopic level.

Energy.moeq IS €nergy removed from an object/substance. Heat can be rejected. Work
can be done by the system. This energy can be in the form of energy stored in any mass
removed.

Energy,, is energy remaining within the object/substance after all energy transfers and
transformationsoccur. This energy can exist in various combinations of kinetic,
potential, flow, and internal energy.
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To further describe each of the components of the above equation, each component can be
broken down as follows:

Energy,ia = KE + PE

Energy,geq = Work done on and heat added to the system
Energy.moved = Work done by and heat removed from the system
Energy,, = KE + PE

The resulting energy balance is provided in Equation 5-5.
KEl + PEl + Edded - Eemoved = KEZ + P@ (5'5)

Neglecting anyheat removed or added to a system, we can replagge,E ane.E in
Equation 5-5 with their associated work terms to obtain Equation 5-6.

KE, +PE +W,, =KE +PE +W (5-6)

The final energy balance is called"simplified energybalance." Any energybalance is a
statement of the Law of Conservation of Energythisisimplified form, thebalance applies

only to mechanical problems, since we neglected heat. However, more specific energy balances
that include heat will be discussedther Fundamental Manuals. For example, specific energy
balances forflow systems will be discussed ithe Heat TransfeFluid Flow, and
Thermodynamics modules.

Summary

The law of conservation of energy is summarized below.

Conservation of Energy Summary
. Energy cannot be created or destroyed, only altered in form.

. Simplified energy balance:

KEl + PEl + Edded = KEQ + Pg + %moved
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POWER

Power is ameasure of the rate at which energy is used. Thermal power is the term
used to refer to the transfer of heat. Mechanical power is the term used to describe
when work is being done.

EO 11 DEFINE the following terms:
e. Power
EOC 1.2 STATE the mathematical expression for:
d. Power
EO 1.3 For a mechanical system, CALCULATE energy, work, and
power.
Power

Poweris defined as the amount of energy used per unit time or rate of doing work. It has the units
of watt, Btu, horsepower, or ft-Ibf/sec.

Thermal Power

Thermalpoweris the measure dfiermal energy used per unit time. It is the rate of heat transfer
or heatflow rate. Examples of thermgowerunits areBritish Thermal UnitgBtu) or kilowatts
(Kw). Thermal power is calculated basically by the mathematical expression of:

heat used

Thermal Power = —————
time required

Thermal energy and calculations of thermal power will be covered in etaieid the Fundamentals
Manual for Heat Transfer, Fluid Flow, and Thermodynamics.
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Mechanical Power

Mechanical energy used per unit time is caftethanical power Mechanical power is the rate at
whichwork is done. Mechanical poweragpressed in units of joules/sec (joules/s) or a watt (W)
in the mks system, and fegbeunds force per secoft-Ibf/s) or horsepower (hp) in tienglish
system. Mechanical power can be calculated using the following mathematical expression.

work done

Power= ——M—
time required

Because work can be defined as force times distance, we can also use the following equation:

o _ Fd (5-6)
t
where:
P = Power (W or ft-Ibf/s)
F = Force (N or Ibf)
d = distance (m or ft)
t = time (sec)

One horsepower is equivalent360 ft-Ibf/s and 745.Watts. Because in the equatiaiboved
divided byt is the same as velocity, an alternate description of power is as follows.

p-tV (5-7)
550
where:
P = power (hp)
F = force (Ibf)
v = velocity (ft/s)

When usingequations 5-6 or 5-7, you must eitlasssume force and veloci#ye constant or that
average values of the force and velocity are used.
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Energy, Work, and Power

Example 1:

Example 2:

A pump provides a flow rate ofa@) gpm.The pump does 1.5 x 10 ft-Ibf of work
every 100 minutes. What is the power of the pump in hp?

work done
time required

p_|15x 1@ ft-Iof 1 min 1 hp
100 min 60 se 550 ft-Ibf/sec

45.5 hp

Power =

a)
Il

A boy rolls a ball with a steady force of 1 Ibf, giving the ball a constant velocity of 5
ft/s. What is the power used by the boy in rolling the ball?

. FV

550

P - (1 Ibf) (5 ft/sec)
550

T
Il

9 x 103 hp

CP-05
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Example 3: A ace cartraveling at constant velocity can go angartermile (1455 ft) in 5
seconds. If the motor generating a force of 18%6f pushing the car, what is the
power of the motor in hp? Assume the car is already at full speed at t=0.

I:):ﬂj

t

b _ | (1890 Ibf)(1455 ftﬂ [ 1 hp

5 sec 550 ft-Ibf/sec
P = 1000 hp
or
p_ Fv
550

P - (1890 Ibf)(291 ft/sec)
550

P = 1000 hp

Summary

The main points of this chapter are summarized below.

Power Summary
. Power is the amount of energy used per unit time.

work done

. Power= ———
time required
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end of text.
CONCLUDING MATERIAL
Review activities: Preparing activity:
DOE - ANL-W, BNL, EG&G Idaho, DOE - NE-73
EG&G Mound, EG&G Rocky Flats, Project Number 6910-0016

LLNL, LANL, MMES, ORAU, REECo,
WHC, WINCO, WEMCO, and WSRC.
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