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 We have all implicitly dealt with sets
 Integers (Z), rationals (Q), naturals (N), reals (R), 

etc.
 We will develop more fully 

 The definitions of sets 
 The properties  of sets
 The operations on sets

 Definition:  A set is an unordered collection of (unique) 
objects

 Sets are fundamental discrete structures and for the 
basis of more complex discrete structures like graphs

Introduction: Part One



 The objects in a set are called elements or 
members of a set. A set is said to contain 
its elements

 Notation, for a set A:
 x ∈ A: x is an element of A                                 
 x ∉ A: x is not an element of A

Introduction: Part Two



Properties: Part One

 Two sets, A and B, are equal is they 
contain the same elements.  We write A=B.

 Example:
 {2,3,5,7}={3,2,7,5}, because a set is 

unordered
 Also, {2,3,5,7}={2,2,3,5,3,7} because a set 

contains unique elements
 However, {2,3,5,7} ≠{2,3}                                



Properties: Part Two

 A multi-set is a set where you specify the 
number of occurrences of each element: 
{m1⋅a1,m2⋅a2,…,mr⋅ar} is a set where 
 m1 occurs a1 times 
 m2 occurs a2 times
 …
 mr occurs ar times

 In Databases, we distinguish
 A set: elements cannot be repeated
 A bag: elements can be repeated



Terminology

 The set-builder notation
O={ x | (x∈Z) ∧ (x=2k) for some k∈Z}

reads: O is the set that contains all x such that x 
is an integer and x is even

 A set is defined in intension when you give its 
set-builder notation
O={ x | (x∈Z) ∧ (0≤x≤8) ∧ (x=2k) for some k ∈ Z }

 A set is defined in extension when you 
enumerate all the elements:

O={0,2,4,6,8}



Venn Diagram: 

 A set can be represented graphically using a 
Venn Diagram
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Properties and Notation: Part One

 A set that has no elements is called the empty 
set or null set and is denoted ∅

 A set that has one element is called a singleton 
set.  
 For example: {a}, with brackets, is a singleton set
 a, without brackets, is an element of the set {a}

 Note the subtlety in ∅ ≠ {∅} 
 The left-hand side is the empty set
 The right hand-side is a singleton set, and a set 

containing a set



Properties and Notation: Part Two 

 For any set S 
 ∅ ⊆ S and
 S ⊆ S

 A is said to be a subset of B, and we write 
A ⊆ B, if and only if every element of A is 
also an element of B                 

 That is, we have the equivalence:
A ⊆ B  ⇔ ∀ x (x ∈ A ⇒ x ∈ B)



Properties and Notation: Part Three 

• A set A that is a subset of a set B is called 
a proper subset if A ≠ B.  

• That is there is an element x∈B such that 
x∉A

• We write: A ⊂ B, 
If there are exactly n distinct elements in a set S, 
with n a nonnegative integer, we say that:

S is a finite set, and
The cardinality of S is n.  Notation: |S| = n.

A set that is not finite is said to be infinite



Equivalence: Part One

 To show that a set is 
 a subset of, 
 proper subset of, or 
 equal to another set.

 To prove that A is a subset of B, use the equivalence 
discussed earlier A ⊆ B  ⇔ ∀x(x∈A ⇒ x∈B)
 To prove that A ⊆ B it is enough to show that for an arbitrary 

(nonspecific) element x, x∈A implies that x is also in B.

 To prove that A is a proper subset of B, you must prove
 A is a subset of B and
 ∃x (x∈B) ∧ (x∉A)



Equivalence:  Part Two

 To show that two sets are equal, it is sufficient 
to show independently (much like a 
biconditional) that 
 A ⊆ B and 
 B ⊆ A

 Logically speaking, you must show the following 
quantified statements:

(∀x (x∈A ⇒ x∈B)) ∧ (∀x (x∈B ⇒ x∈A))



Power Set

 The power set of a set S, denoted P(S), is the set of all 
subsets of S.

 Examples
 Let A={a,b,c}, 

P(A)={∅,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}
 Let A={{a,b},c}, P(A)={∅,{{a,b}},{c},{{a,b},c}}

 Note: the empty set ∅ and the set itself are always 
elements of the power set.  

 The power set is a fundamental combinatorial object 
useful when considering all possible combinations of 
elements of a set

 Let S be a set such that |S|=n, then
|P(S)| = 2n



Tuples 

 Sometimes we need to consider ordered 
collections of objects

 The ordered n-tuple (a1,a2,…,an) is the 
ordered collection with the element ai being 
the i-th element for i=1,2,…,n

 A 2-tuple (n=2) is called an ordered pair



Cartesian Product

 Let A and B be two sets.  The Cartesian product of A 
and B, denoted AxB, is the set of all ordered pairs (a,b) 
where a∈A and b∈B

AxB = { (a,b) | (a∈A) ∧ (b ∈ B) }
 The Cartesian product is also known as the cross 

product
 A subset of a Cartesian product, R ⊆ AxB is called a 

relation. 
 Note: AxB ≠ BxA unless A=∅ or B=∅ or A=B
 Cartesian Products can be generalized for any n-tuple
 The Cartesian product of n sets, A1,A2, …, An, denoted 

A1×A2×… ×An, is
A1×A2×… ×An ={ (a1,a2,…,an) | ai ∈ Ai for i=1,2,…,n}



Notation with Quantifiers

 Whenever we wrote ∃xP(x) or ∀xP(x), we specified the 
universe of discourse using explicit English language

 Now we can simplify things using set notation!
 Example

 ∀ x ∈ R (x2≥0)
 ∃ x ∈ Z (x2=1)
 Also mixing quantifiers:

∀a,b,c ∈ R ∃ x ∈ C (ax2+bx+c=0)



Set Operations

 Arithmetic operators (+,-, × ,÷) and set operators exist 
and act on two sets to give us new sets
 Union
 Intersection 
 Set difference
 Set complement
 Generalized union 
 Generalized intersection



Set Operators: Union

 The union of two sets A and B is the set that contains all 
elements in A, B, r both.  We write:

A∪B = { x | (x ∈ A) ∨ (x ∈ B) }

U
A B



Set Operators: Intersection

 The intersection of two sets A and B is the set that 
contains all elements that are element of both A and B.  
We write:

A ∩ B = { x | (x ∈ A) ∧ (x ∈ B) }

U
A B



Disjoint Sets

 Two sets are said to be disjoint if their 
intersection is the empty set: A ∩ B = ∅

U
A B



Set Difference

 The difference of two sets A and B, denoted A\B or A−B, 
is the set containing those elements that are in A but 
not in B

U A B

A - B = { x | (x ∈ A) ∧ (x∉B) }



Set Complement

 Definition: The complement of a set A, denoted A, 
consists of all elements not in A.  That is the difference 
of the universal set and U: U\A

A= A = {x | x ∉ A }

U A A



Generalized Union

 The union of a collection of sets is the set 
that contains those elements that are 
members of at least one set in the 
collection

∪ Ai = A1 ∪ A2 ∪ … ∪ An
i=
1

n



Generalized Intersection

 The intersection of a collection of sets is the 
set that contains those elements that are 
members of every set in the collection

∩ Ai = A1 ∩ A2 ∩…∩ Ani=1

n
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Relation
A relation is any set of ordered pairs.

A special kind of relation, called a function, is very important 
in mathematics and its applications.

Function
A function is a relation in which, for each value of the first 

component of the ordered pairs, there is exactly one value 
of the second component.

In a relation, the set of all values of the independent variable 
(x) is the domain. 

The set of all values of the dependent variable (y) is the 
range

Relations and Functions
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Introduction to Functions



Tables and Graphs

Graph of the function, F

x

y

Table of the 
function, F

x y

–2 6

0 0

2 –6
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Function Notation

When a function f is defined with a rule or an equation using x and y for the 
independent and dependent variables, we say “y is a function of x” to 
emphasize that y depends on x. We use the notation

y = f (x),

called function notation, to express this and read f (x), as “f of x”. 

The letter f stands for function. For example, if y = 5x – 2, we can name
this function f and write

f (x) = 5x – 2.

Note that f (x) is just another name for the dependent variable y.



Linear Function

A function that can be defined by

f (x) = ax + b,

for real numbers a and b is a linear function. 

The value of a is the slope of m of the graph of the 
function.  Before we can draw a graph of our 
function we must look at the co-ordinate plane or 
the Cartesian Co-ordinate plane. 



The Co-ordinate Plane

A function that can be defined by f (x) = ax + b,

The plane of the grid is 
called the coordinate plane.

The horizontal number line
is called the ______.x-axis

The vertical number line
is called the ______.y-axis

The point of intersection of 
the two axes is called the 
origin

x

y



Graphing a Function

An ordered pair of real numbers, called coordinates of a point, locates a
point in the coordinate plane.

Each ordered pair corresponds to EXACTLY ________ in the 
coordinate plane.

one point

The point in the coordinate plane is called the graph of the ordered pair.

Locating a point on the coordinate plane is called _______ the ordered pair.graphing
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Definition: Logarithmic Function

For x > 0 and b > 0, b = 1,
y = logb x is equivalent to by = x.

The function f (x) = logb x is the logarithmic 
function with base b.

Logarithmic form: y = logb x Exponential Form: by = x.

Exponent Exponent

Base Base



Properties of Logarithms

For x > 0 and b ≠ 1,
 logb bx = x  The logarithm with base b of 

b raised to a power equals that power.
 b logb x = x  b raised to the logarithm with 

base b of a number equals that number.

General Properties: Common Logarithms
1. logb 1 = 0 1. log 1 = 0
2. logb b = 1 2. log 10 = 1
3. logb bx = 0 3. log 10x = x
4. b logb x = x 4. 10 log x = x



Properties of Natural Logarithms

General Properties Natural Logarithms
1. logb 1 = 0 1. ln 1 = 0
2. logb b = 1 2. ln e = 1
3. logb bx = 0 3. ln ex = x
4. b logb x = x 4. e ln x = x

The function y=ex has an inverse called the Natural 
Logarithmic Function.

Y=ln x



Properties of Natural Logarithms

y=ex and y=ln x are inverses of each other!



Characteristics of f(x) = logbx

 The x-intercept is 1. There is no y-intercept.
 The y-axis is a vertical asymptote. (x = 0)
 If 0 < b < 1, the function is decreasing. If b > 1, the 

function is increasing. 
 The graph is smooth and continuous. It has no sharp 

corners or edges.
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f (x) = logb x
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Domain of Logarithmic Functions

Because the logarithmic function is the inverse 
of the exponential function, its domain and 
range are the reversed.

The domain is { x | x > 0 } and the range will 
be all real numbers.  

For variations of the basic graph, say 
the domain will consist of all x for 

which x + c > 0.

( )( ) logbf x x c= +
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Right Triangle Trigonometry

Trigonometry is based upon ratios of the sides of right 
triangles.

The six trigonometric functions of a right triangle, with an 
acute angle, are defined by ratios of two sides of the 
triangle.

θ

opphyp

adj

The sides of the right 
triangle are:
 opposite 
 adjacent
 hypotenuse 



The hypotenuse is the longest side and is always opposite 
the right angle.

The opposite and adjacent sides refer to another angle, 
other than the 90o.

Right Triangle Trigonometry



sine, cosine, tangent, 
cotangent, secant, and cosecant.

opp

adj

hyp

θ

sin θ  = cos θ = tan θ =

csc   = sec  = cot   = opp
hyp

adj
hyp
hyp
adj

adj
opp

opp
adj

Trigonometric Functions

hyp
opp



Reciprocal Functions

sin θ = 1/csc θ csc θ = 1/sin θ
cos θ = 1/sec θ sec θ = 1/cos θ
tan θ = 1/cot θ cot θ = 1/tan θ



Important Trigonometric Identities

Co function Identities
sin θ = cos(90 − θ ) cos θ = sin(90− θ )
sin θ = cos (π/2− θ ) cos θ = sin (π/2− θ )
tan θ = cot(90− θ ) cot θ = tan(90− θ )
tan θ = cot (π/2− θ ) cot θ = tan (π/2− θ )
sec θ = csc(90− θ ) csc θ = sec(90− θ ) 
sec θ = csc (π/2− θ ) csc θ = sec (π/2− θ )

Reciprocal Identities
sin θ = 1/csc θ cos θ = 1/sec θ tan θ = 1/cot θ
cot θ = 1/tan θ sec θ = 1/cos θ csc θ = 1/sin θ

Quotient Identities
tan θ = sin θ /cos θ cot θ = cos θ /sin θ
Pythagorean Identities
sin2 θ + cos2 θ = 1   tan2 θ + 1 =  sec2 θ cot2 θ + 1 = csc2 θ
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Definition
Vector analysis is a mathematical tool with which 
electromagnetic (EM) concepts are most conveniently 
expressed and best comprehended. 

A quantity is called a scalar if it has only magnitude 
(e.g., mass, temperature, electric potential, 
population).

A quantity is called a vector if it has both magnitude 
and direction (e.g., velocity, force, electric field 
intensity).

The magnitude of a vector   is a scalar written as A 
or

A

A



Unit Vector: Part One

A unit vector      along     is defined as a vector 
whose magnitude is unity (that is,1) and its 
direction is along 

Thus: 

A
A

A
AeA == )e( A 1=

Ae

AeAA =

which completely specifies      in terms of A and its 
direction Ae

A



Unit Vector: Part Two
A unit vector      along     is defined as a vector 

whose magnitude is unity (that is,1) and its 
direction is along 

Thus:       

which completely specifies      in terms of A and its 
direction 

A
A

A
AeA == )e( A 1=

Ae

AeAA =

Ae
A

A vector      in Cartesian (or rectangular) coordinates 
may be represented as

Where:
where AX, Ay, and AZ are called the components of      
in the x, y, and z directions, respectively;     ,     , and

are unit vectors in the x, y and z directions, 
respectively.

zzyyxx eAeAeA ++)A,A,A( zyx

A

A

 

xe

 

ze

 

ye



Coordinate Systems

Common coordinate systems are:
 Cartesian
 Polar

Also called rectangular coordinate 
system
x- and y- axes intersect at the 
origin
Points are labeled (x,y)



Polar Coordinate System

Origin and reference line 
are noted
Point is distance r from 
the origin in the direction 
of angle θ, ccw from 
reference line

 The reference line is 
often the x-axis.

Points are labeled (r,θ)



Polar to Cartesian Coordinates

Based on forming a right 
triangle from r and θ

x = r cos θ
y = r sin θ

If the Cartesian 
coordinates are known:

2 2

tan y
x

r x y

θ =

= +



Vector Addition, Rules
The three basic laws of algebra obeyed by any given 

vector
A, B, and C, are summarized as follows:

Commutative

Associative

Distributive

where k and l are scalars

ABBA +=+

C)BA()CB(A ++=++

kAAk =

A)kl()Al(k =

BkAk)BA(k +=+



Vector Multiplication: Part One
When two vectors     and     are multiplied, the result is
either a scalar or a vector depending on how they are
multiplied. The two types of vector multiplication:

1. Scalar (or dot) product:

2.Vector (or cross) product:

The dot product of the two vectors     and     is defined
geometrically as the product of the magnitude of     and 
The projection of     onto      (or vice versa):

where       is the smaller angle between    and

A

ABcosABBA θ=⋅

BA ⋅

B

ABθ

A

BA ×

A B
B

B

A B



Vector Multiplication: Part Two
The cross product of two vectors     and     is defined as

where     is a unit vector normal to the plane containing     
and     . The direction of     is determined using the right-
hand rule or the right-handed screw rule.

A

A

nABesinABBA θ=×

B

B

ne
ne

BA ×

Direction of       
and        using 
(a) right-hand 
rule,
(b) right-handed

screw rule

ne



Vector Multiplication: Part Three
Note that the cross product has the following basic
properties:
(i) It is not commutative:

It is anticommutative:

(ii) It is not associative:

(iii) It is distributive:

(iv)

ABBA ×≠×

ABBA ×−=×

C)BA()CB(A ××≠××

CABACBA ×+×=+× )(

0AA =× )0(sin =θ
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Differential Calculus

The two basic forms of calculus are 
 differential calculus and 
 integral calculus. 
This lecture will be devoted to the former.  
Integral Calculus will be presented in 
another lecture. 

66



Differentiation and the Derivative

The study of calculus begins with the basic definition of 
a derivative. A derivative is obtained through the process 
of differentiation, and the study of all forms of 
differentiation is collectively referred to as differential 
calculus.
If we begin with a function and determine its derivative, 
we arrive at a new function called the first derivative. 
If we differentiate the first derivative, we arrive at a new 
function called the second derivative, and so on.

67



Definition of Derivative

x∆

y∆

( )y f x=

x

y

68

The derivative of a function is the slope at a 
given point.



Various Symbols for the Derivative

( )  or    '( )  or  dy df xf x
dx dx

0
Definition:    lim

x

dy y
dx x∆ →

∆
=

∆

69



Piecewise Linear Segment

1 1( , )x y

2 2( , )x y

2 1y y−

2 1x x−

70

2 1

2 1

slope y ydy
dx x x

−
= =

−



Example of a Simple Derivative

2y x=

71

2 22 ( )y y x x x x+ ∆ = + ∆ + ∆
22 ( )y x x x∆ = ∆ + ∆

0
lim 2
x

dy y x
dx x∆ →

∆
= =

∆



Chain Rule of Differentiation

( )y f u=

72

( )u u x=

( ) '( )dy df u du duf u
dx du dx dx

= =

( )'( ) df uf u
du

=where



Table of Derivatives: Part One

( )f x '( )f x Derivative Number

( )af x '( )af x D-1

( ) ( )u x v x+ '( ) '( )u x v x+ D-2

( )f u ( )'( ) du df u duf u
dx du dx

=
D-3

a 0 D-4

          ( 0)nx n ≠ 1nnx − D-5

          ( 0)nu n ≠ 1n dunu
dx

−
D-6

uv dv duu v
dx dx

+ D-7

u
v

2

du dvv u
dx dx

v

− D-8

ue u due
dx D-9

73



74

Table of Derivatives:Part Two

ua ( )ln u dua a
dx D-10

ln u 1 du
u dx D-11

loga u ( ) 1loga
due

u dx D-12

sin u
cos duu

dx
 
 
 

D-13

cosu
sin duu

dx
− D-14

tan u 2sec duu
dx D-15

1sin u−
1

2

1           sin
2 21

du u
dxu

π π− − ≤ ≤ 
 −

D-16

1cos u−

2

1           
1

du
dxu

−

−
( )1 0 cos u π−≤ ≤ D-17

1tan u−
1

2

1            tan
1 2 2

du u
u dx

π π− − < < +  
D-18



Higher-Order Derivatives

( )y f x=

75

( )'( )dy df xf x
dx dx

= =

2 2

2 2

( )''( )d y d f x d dyf x
dx dx dx dx

 = = =  
 

3 3 2
(3)

3 3 2

( )( )d y d f x d d yf x
dx dx dx dx

 
= = =  

 



Applications: Maxima and Minima

 1. Determine the derivative.
 2. Set the derivative to 0 and solve for 

values that satisfy the equation.
 3. Determine the second derivative.

 (a) If second derivative > 0, point is a 
minimum.

 (b) If second derivative < 0, point is a 
maximum.
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Displacement, Velocity, Acceleration

Displacement

Velocity

Acceleration

dyv
dt

=
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The total differential and total derivative 
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If a function can be obtained by directly integrating its 
total differential,  the differential of function f is called 
exact differential, whereas those that do not are inexact 
differential. 
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The chain rule 
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Partial Differentiation of Integrals



Directional Derivatives: Part One

 Recall that, if z = f(x, y), then the partial 
derivatives fx and fy are defined as:

0 0 0 0
0 0 0

0 0 0 0
0 0 0

( , ) ( , )( , ) lim

( , ) ( , )( , ) lim

x h

y h

f x h y f x yf x y
h

f x y h f x yf x y
h

→

→

+ −
=

+ −
=



 Suppose that we now wish to find the rate 
of change of z at (x0, y0) in the direction of 
an arbitrary unit vector u = <a, b>.

 To do this, we consider 
the surface S with 
equation z = f(x, y) [the 
graph of f ] and we let 
z0 = f(x0, y0).

 Then, the point P(x0, 
y0, z0) lies on S.

Directional Derivatives: Part Two



 The vertical plane that 
passes through P
in the direction of u
intersects S in 
a curve C.

 The slope of the 
tangent line T to C
at the point P is the 
rate of change of z
in the direction 
of u.

Directional Derivatives: Part Three



Now, let:
Q(x, y, z) be another point 
on C.
P’, Q’ be the projections of 
P, Q on the xy-plane.
Then the vector          is 
parallel to U. 
So: 

For some scaler h. 
Therefore:

x –x0 = ha
y –y0 = hb

' '

P Q

' '
,

P Q h
ha hb

=
= 〈 〉

u


Directional Derivatives: Part Four



From: x –x0 = ha
y –y0 = hb

Then:

In the limit as h → 0, we obtain 
the rate of change of z in the 
direction of U.
This is called the directional 
derivative of f in the direction of 
U.

0

0 0 0, 0( , ) ( )

z zz
h h

f x ha y hb f x y
h

−∆
=

+ + −
=

0 0

0 0 0 0

0

( , )
( , ) ( , )lim

h

D f x y
f x ha y hb f x y

h→

+ + −
=

u

Directional Derivatives: Part Five



If we define a function g of the single 
variable h by

If we define a function g of the single variable h by:

then, by the definition of a derivative, we have the following 
equation.

( , ) ( , ) ( , )x yD f x y f x y a f x y b= +u

0 0( ) ( , )= + +g h f x ha y hb

0

0 0 0 0

0

0 0

'(0)
( ) (0)lim

( , ) ( , )lim

( , )
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h

g
g h g

h
f x ha y hb f x y

h

D f x y

→

→

−
=

+ + −
=

= u

Directional Derivatives: Part Six



Suppose the unit vector u
makes an angle θ with 
the positive x-axis, as 
shown. Then, we can 
write u = <cos θ, sin θ>
and the directional 
derivative becomes:

( , ) ( , ) cos ( , )sinx yD f x y f x y f x yθ θ= +u

Notice that the directional derivative can be written as the dot 
product of two vectors:

( , ) ( , ) ( , )
( , ), ( , ) ,
( , ), ( , )

x y

x y

x y

D f x y f x y a f x y b
f x y f x y a b
f x y f x y

= +

= 〈 〉 ⋅ 〈 〉

= 〈 〉 ⋅

u

u

Directional Derivatives: Part Seven



The first vector in that dot product occurs not only in 
computing directional derivatives but in many other contexts 
as well. This directional derivative is called the Gradient of f.
The Gradient of f is written as:       f which is read as “del f”
If f is a function of two variables x and y then the gradient of 
f(x,y) is defined as:

We can rewrite the expression for the directional derivative 
as:

This expresses the directional derivative in the direction of u
as the scalar projection of the gradient vector onto u.

∇

( , ) ( , ), ( , )x yf x y f x y f x y
f f
x x

∇ = 〈 〉

∂ ∂
= +

∂ ∂
i j

( , ) ( , )D f x y f x y= ∇ ⋅u u

The Gradient: Part One



For functions of three variables, we can define directional 
derivatives in a similar manner.
The directional derivative of f at (x0, y0, z0) in the direction of 
a unit vector u = <a, b, c> is: 

Using vector notation we can rewrite the directional derivative 
as:

where: 
 x0 = <x0, y0> if n = 2
 x0 = <x0, y0, z0> if n = 3

0 0 0

0 0 0 0 0 0

0

( , , )
( , , ) ( , , )lim

h

D f x y z
f x ha y hb z hc f x y z

h→

+ + + −
=

u

0 0
0 0

( ) ( )( ) lim
h

f h fD f
h→

+ −
=u

x u xx

The Gradient: Part Two



For a function f of three variables, the gradient vector, 
denoted by       or grad f, is: 

And is written as:

The directional derivative can be rewritten as:

The maximum value of the directional derivative Duf(x) 
is:             and it occurs when u has the same direction as the 
gradient vector 

f∇
( , , )

( , , ), ( , , , ), ( , , )x y z

f x y z
f x y z f x y z f x y z

∇
= 〈 〉

, ,x y zf f f f
f f f
x y z

∇ = 〈 〉

∂ ∂ ∂
= + +

∂ ∂ ∂
i j k

( , , ) ( , , )D f x y z f x y z= ∇ ⋅u u

| ( ) |f∇ x
( )f∇ x

The Gradient: Part Three



Suppose S is a surface with equation F(x, y, z) that is, it is a 
level surface of a function F of three variables.
Then, let P(x0, y0, z0) be a point on S.
Then, let C be any curve that lies on the surface S and passes 
through the point P.

The curve C is described by a 
continuous vector function 
r(t) = <x(t), y(t), z(t)>
The gradient vector at P          
is perpendicular to the tangent 
vector r’(t0) and to any curve C
on S that passes through P. 
Thus the direction of the 
normal line is given by the 
gradient vector.

0 0 0( , , )F x y z∇

0 0 0( , , )F x y z∇

Tangent Plane



We now summarize the ways in which the gradient vector is 
significant. 
For a function f of three variables and a point P(x0, y0, z0) 
in its domain we know that the gradient vector                         
gives the direction of fastest increase of f. 0 0 0( , , )f x y z∇

On the other hand, we know 
that                      is orthogonal 
to the level surface S of f
through P. 
So, it seems reasonable that, if 
we move in the perpendicular 
direction, we get the maximum 
increase.

0 0 0( , , )f x y z∇

Summary of Gradient



Chapter Six:
Integral Calculus

Developed for Azera Global

By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E. 



Outline

98

Slide 99- Integral Calculus
Slide 100-Total Differential
Slide 101-Anti-Derivative
Slide 102-Indefinate and Definite Integral
Slide 103-Definite Integral: Area under the Curve
Slide 104-Guidelines
Slide 105-Tabulation of Integrals
Slide 106-Common Integrals: Part One
Slide 107-Common Integrals: Part Two
Slide 108-Displacement, Velocity, Acceleration



The basic concepts of differential calculus
were covered in the preceding 
presentation. This presentation will be 
devoted to integral calculus, which is the 
other broad area of calculus. 
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Integral Calculus



Anti-Derivatives

An anti-derivative of a function f(x) is a new function 
F(x) such that

( ) ( )dF x f x
dx

=
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Indefinite and Definite Integrals

( )f x dx∫
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2

1
( )

x

x
f x dx∫

Indefinite

Definite



Definite Integral/ Area Under the Curve

1y 2y
3y 4y

Ky

a b x

y

5y
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Approximate Area k
k

y x= ∆∑

lim
b

ka x dx k
ydx y x

∆ →
= ∆∑∫

Exact Area as Definite Integral



Definite Integral with Variable Upper Limit

x

a
ydx∫
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( )
x

a
y u du∫

More “proper” form with “dummy” variable



Guidelines

 If y is a non-zero constant, integral is either 
increasing or decreasing linearly.

 If segment is triangular, integral is increasing or 
decreasing as a parabola.

 If y=0, integral remains at previous level.
 Integral moves up or down from previous level; 

i.e., no sudden jumps.
 Beginning and end points are good reference 

levels.
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Tabulation of Integrals

( ) ( )F x f x dx= ∫
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( )
b

a
I f x dx= ∫

]( ) ( ) ( )b

a
I F x F b F a= = −



Common Integrals: Part One

( )f x ( ) ( )F x f x dx= ∫ Integral Number

( )af x ( )aF x I-1

( ) ( )u x v x+ ( ) ( )u x dx v x dx+∫ ∫ I-2

a ax I-3

( )          1nx n ≠ − 1

1

nx
n

+

+

I-4

axe axe
a

I-5

1
x ln x I-6

sin ax
1 cos ax
a

− I-7

cos ax
1 sin ax
a I-8

2sin ax
1 1 sin 2
2 4

x ax
a

− I-9
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Common Integrals: Part Two

2cos ax
1 1 sin 2
2 4

x ax
a

+ I-10

sinx ax 2

1 sin cosxax ax
a a

− I-11

cosx ax 2

1 cos sinxax ax
a a

+ I-12

sin cosax ax 21 sin
2

ax
a I-13

sin cosax bx
2 2for a b≠

cos( ) cos( )
2( ) 2( )

a b x a b x
a b a b

− +
− −

− +
I-14

axxe ( )2 1
axe ax

a
− I-15

ln x ( )ln 1x x −
I-16

2

1
ax b+

11 tan ax
bab

−  
  
 

I-17
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Displacement, Velocity, Acceleration

( )

2 2( ) acceleration in meters/second  (m/s )
( ) velocity in meters/second (m/s)
( ) displacement in meters m

a a t
v v t
y y t

= =
= =

= =
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( )dv a t
dt

= ( )dvdv dt a t dt
dt

 = = 
 

( )dv a t dt=∫ ∫

dv v=∫

1( )v a t dt C= +∫

( )dy v t
dt

=

( )dydy dt v t dt
dt

 = = 
 

2( )y v t dt C= +∫
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