
Introduction to UML

Developed for the Azera Group

By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.

UML for Software Development

 Introduction
 Use case diagram
 Activity diagram
 Class diagram
 State machine diagram
 Other diagrams of interest
 UML in the software process

What is UML

 The unified modeling language (UML) is a general-
purpose visual modeling language that is intended to
provide a standard way to visualize the design of a
system.

 UML provides a standard notation for many types of
diagrams which can be roughly divided into three main
groups: behavior diagrams, interaction diagrams, and
structure diagrams.

 The creation of UML was originally motivated by the
desire to standardize the disparate notational systems
and approaches to software design.

Origins of UML

 In the 1980s, object-oriented programming moved from research
labs into the real world

 Smalltalk and C++ became popular languages and various people
started thinking about object-oriented graphical design languages

 Between 1988 and 1992, the key authors were Booch, Coad,
Jacobson, Odell, Rumbaugh, Shlaer, Mellor, and Wirfs-Brock
 Each author was informally leading a group of practitioners who liked

those ideas
 The same basic OO concepts would reappear in very different notations,

causing confusion with clients
 When Jim Rumbaugh left GE to join Grady Booch at Rational, an

alliance was formed and a critical mass of market share occurred
 In 1997, Rational released UML 1.0

Origins of UML (Two)

 Consists of a family of graphical notations that help in describing and
designing software systems

 Focuses particularly on software systems built using the object-oriented
style

 Controlled by the Object Management Group, which is an open
consortium of companies

 Comes from the unification of many OO graphical modeling languages
that thrived in the 1980s and early 1990s

UML As a Sketch

 Most common use of UML
 Used to help communicate some aspect of a system and

to better understand it
 Used for both forward engineering (i.e., build diagrams

before coding) and reverse engineering (i.e., build
diagrams from existing code)

 Strives to be informal and dynamic
 Only emphasizes those classes, attributes, operations, and

relationships that are of interest
 More concerned with selective communication than

complete specification

UML As a Blueprint

 Goal is completeness
 Is more definitive, while the sketch approach is more explorative
 Used to describe a detailed design for a programmer to follow in

writing source code
 Notation should be sufficiently complete so that a programmer can

follow it in a straightforward manner
 Can be used by a designer to develop blueprint-level models that

show interfaces of subsystems or classes
 Developers then work out the implementation details

 As a reversed engineered product, diagrams convey detailed
information about the source code that is easier for developers to
understand

 UML sketches are useful with both forward and reverse
engineering and in both conceptual and software perspectives

 Detailed forward engineering blueprints are difficult to do well
and slow down the development effort
 Actual implementation of interfaces will reveal the needs for

changes
 The value of reversed engineered blueprints depends on the

CASE tool
 A dynamic browser would be very helpful; a thick document wastes

time and resources
 UML as a programming language will probably never see

significant usage
 Graphical forms have not shown to be more productive in writing

code than textual code for most programming tasks

Ways to use UML

Types of UML Diagrams

Diagram Name Purpose

Activity Models procedural and parallel behavior

Class (*) Models classes, attributes, operations and relationships

Communication Models interaction between objects

Component Models structure and connection of components

Composite Structure Models runtime decomposition of a class

Deployment Models deployment of artifacts to nodes

Interaction overview Mixes the sequence and activity diagram

UML Diagrams: Part Two
Diagram Name Purpose

Object Models example configurations of instances

Package Models compile-time hierarchical structure

Sequence Models sequence interaction between objects

State Machine (*) Models how events change an object over its life

Timing Models timing interaction between objects

Use Case (*) Models how users interact with a system

Classification of Diagram Types

Diagram

Behavior
Diagram

Structure
Diagram

Class
Diagram

Composite
Structure Diagram

Object
Diagram

Activity
Diagram

Use Case
Diagram

State Machine
Diagram

Interaction
Diagram

Component
Diagram

Deployment
Diagram

Package
Diagram

Sequence
Diagram

Communication
Diagram

Interaction
Overview
Diagram

Timing
Diagram

Use Case Diagram

 Use cases serve as a technique for capturing the functional
requirements of a system

 Describes the typical interactions between the users of a system
and the system itself, providing a narrative of how a system is
used

 A use case consists of a set of one or more scenarios tied
together by a common user goal

 A scenario is a sequence of steps describing an interaction
between a user and a system; some scenarios describe
successful interaction; others describe failure or errors

 Users are referred to as actors; an actor is a role that carries
out a use case

 An actor need not always be a person; it can also be an external
system that is either automated or manual

Use Case Diagram: Part Two

 A use case diagram is like a graphical table of contents of the
use cases for a system
 It shows the use cases, the actors, and the relationships between

them
 Use cases represent an external view of the system;

consequently, they have no correlation to the classes in the
system
 They can serve as a starting point for writing software validation

test cases

13

Client-Server Use Case Diagram

14

Initiates Session by contacting
Azera Key Encryption Server

Server Issues new key for a single
Session and sends the key to the client

and the application server

Client and Server can communicate
With each other using the encrypted
Messaging system initiated by the

Proxy Server (TCP/IP or UDP)

Client Application Server

Proxy Server System

5

2

3

4

5

1

Peer-to-peer Use Case Diagram

15

Initiates Session by contacting
Azera Key Encryption Server

Server Issues new key for a single
Session and sends the key to client-One

and client-Two

Clients can communicate
With each other using the encrypted
Messaging system initiated by the

Proxy Server (TCP/IP or UDP)

Client-One Client-Two

Proxy Server System and
key issuer

5

2

3

4

5

1

3. Activity Diagram

Activity Diagram

 Serves as a technique to describe procedural logic, business
process logic, and work flow

 Is similar to a flowchart except that it can also show parallel
behavior

 States the essential sequencing rules to follow, thereby allowing
concurrent algorithms to be used
 Consequently, an activity diagram allows whoever is doing the

process to choose the order in which to do certain things
 Can be used to describe the actions in a use case

17

Example Activity Diagram

18

Set counter = positive n
Set accumulator = initial value

n > 1

Set accumulator = accumulator * n
Set n = n - 1

(n mod 5) == 0

Display accumulator value

Return accumulator value

T

F

T

F

Class Diagram

Class Diagram

 Describes the types of objects in the system and the various
kinds of static relationships that exist among them

 Also shows the properties and operations of a class and the
constraints that apply to the way objects are connected

 A class box has three parts:
 Name of the class
 Attributes of the class
 Operations of the class

 Properties represent structural features of a class and consist of
attributes and associations

20

Name

Attributes

Operations

Attribute

 Example
+ criticalMsg: String [1] = "Error message" {readonly}

 Syntax
 Visibility marker: public (+) or private (-)
 Name: name of the attribute in the programming language
 Type: Type of the attribute in the programming language
 Multiplicity: how many objects fill the property
 Default: Default value of the attribute at instantiation
 {property-string}: additional properties of the attribute

 Describes a property as a line of text within the class box
 Used for representing value types

21

visibility name: type multiplicity = default {property-string}

Association
 Represented by a solid line between two classes directed from

the source class to the target class
 Used for representing (i.e., pointing to) object types
 The name of the association goes at the target end of the

association together
 The target end of the association links to the class that is the

type of the property
 Multiplicities can be shown at both ends
 Arrows may be bidirectional

22

1..nSource Target

Name

Aggregation and Composition

 Aggregation and composition are sometimes viewed as special
types of associations and have their own UML symbol of a
diamond at the source end of a line

 Aggregation is a part-of relationship
 Composition is more restrictive than aggregation

 The diamond is filled in (i.e. shaded)
 The part pointed to does not continue to exist without the whole

23

1..nSource Target

Name

Operation

 Example: + computeTotal (account: Account) : float
 Syntax

 Visibility marker: public (+) or private (-)
 Name: name of the operation
 Parameter-list: list of parameters passed

 Syntax: direction name : type = default-value
 Direction is (in), (out), or (inout); default is (in)

 Return-type: Type of the return value
 {property-string}: additional properties of the

operation
24

visibility name (parameter-list) : return-type {property-string}

Operation: Part Two

 Portrays actions that a class knows to carry out
 Corresponds to the methods of a class
 Operations may be queries or modifiers; modifiers

change the state of any object
 Set and get operations are implied and therefore not

shown

25

Generalization

 Portrays inheritance between a super class and a subclass
 Is represented by a line with a triangle at the target end as shown

below

26

Super class

Subclass Subclass

Dependency
 A dependency exists between two elements if changes to the

definition of one element (i.e., the source or supplier) may
cause changes to the other element (i.e., the client)

 Examples
 One class sends a message to another class
 One class mentions another as a parameter to an operation

 Once a dependency is created, if a class changes its interface,
any message sent to that class may no longer be valid

 A general rule is to minimize dependencies and be wary of
cycles

27

ClassClass

Example Class Diagram

28

1..n

Production
Manager

Auditor

Report
Generator

Transaction
Processor

Account

Accounts
Payable

Accounts
Receivable

Input
Verifier

Error Log Input Handler

Local File
Handler

Remote File
Handler

Account List

Accountant

When to Use Class Diagrams

 Class diagrams are the backbone of UML and are the most used
diagrams

 Normally use only a subset of the notations available: class box,
attributes, operations, association, aggregation, and
generalization

 Class diagrams only model software structure; consequently, it
is easy to get too focused on class diagrams and ignore
behavior
 Use a state diagram to model the behavior of a class
 Use a sequence diagram to model interactions (i.e., behavior)

among objects of various classes

State Machine Diagram

State Machine Diagram

 Commonly called a state diagram
 A state diagram describes the behavior of a system
 In object-oriented technology, a state diagram shows the lifetime

behavior of a single object
 A state diagram captures the behavior of a state across several use

cases
 A state diagram consists of states and transitions

 Note that a state diagram is NOT a set of processes connected by lines
representing data input and output

 A state is characterized by the current values of an object's
attributes and its name reflects some ongoing activity or state

 A transition indicates a movement from one state to another
because an event has occurred; this transition changes one or more
attribute values of the class

Transition

 Syntax
 Trigger-signature: a single event that triggers a potential

change of state
 Guard: a Boolean condition that must be true for the

transition to be taken
 Activity: some behavior that is executed during the

transition

trigger-signature [guard]/activity

Transition: Part Two

 All three parts of the transition label are optional
 A missing guard means the transition is taken every time the event

occurs
 A missing activity indicates that nothing extra is done during the

transition
 A missing trigger-signature is rare; this means the transition is

immediately taken and usually occurs in activity states
 When an event occurs in a state, each corresponding transition out of

the state must be unique
 Multiple transitions with the same event must have guards on them

that are mutually exclusive; otherwise its non-deterministic
 If an event occurs for which there is no transition labeled, then the

event is ignored in that state

Activity State

 In some states, an object is inactive as it waits for the next
event before it does something

 In an activity state, the object is doing some ongoing work
 The work may take a finite amount of time
 A transition from the state cannot occur until the work is done
 This is represented by "do/ activity" notation in the state box

State Diagram for a stack

Empty
Stack

Partially
Filled Stack

Full Stack

push

pop [n == 1]

push [n - 1 == max]

push [n – 2 < max]

pop [n > 1]

pop [n == max]

pop / return error

push [n >= max] / set n to max; return error

Implement a State Diagram in Code
 A double-nested switch statement

 Each case label in a switch has its own internal switch statement
 The case labels of the external switch are various states
 The case labels of each internal switch are events
 Guards are implemented as Boolean conditions

 A state table with columns for source state, target state, event,
guard, and activity

 The state pattern, which creates a hierarchy of state classes to
handle behavior of the states

Other Diagrams of Interest

Sequence Diagram

 Captures the behavior of a single scenario in a use case
 Shows a number of example objects and messages that are passed

between those objects within the use case
 The columns of the diagram represent each object involved in the use

case
 The life time of an object progresses from the top of the diagram to

the bottom
 Clearly illustrates the calls between participants and the sequence of

those calls
 Gives a good picture about which participants are doing which

processing

Sequence Diagram (continued)

 Can exhibit centralized control or distributed control
 In centralized control, one participant does all of the processing
 In distributed control, processing is split among many participants
 Distributed control gives more opportunities for using polymorphism rather

than using conditional logic
 Use a sequence diagram when you want to look at the behavior of

several objects within a single use case
 When not to use a sequence diagram

 If you want to look at the behavior of a single object across many use
cases, use a state diagram

 If you want to look at the behavior of several objects across many
scenarios, use an activity diagram

Object Diagram

 Represents a snapshot of the objects in a system at a
point in time

 Shows instances rather than classes, therefore it is
sometimes called an instance diagram

 When to use object diagrams
 To show examples of objects connected together based on a

specific multiplicity number
 To show instances with values for their attributes

Package Diagram
 Used to take any construct in UML and group its elements

together into higher-level units
 Used most often to group classes
 Corresponds to the package concept in Java
 Represented by a tabbed folder, where the tab contains the

package name
 Can show dependencies between packages

 The more dependencies coming into a package, the more stable its
interface needs to be

Deployment Diagram
 Shows a system's physical layout, revealing which pieces of

software run on which computer platforms
 Uses rectangles to represent nodes and lines to represent

communication paths between nodes
 Nodes contain artifacts, which are the physical manifestations of

software (i.e., executable and data files)
 Listing an artifact in a node shows that the artifact is deployed to

that node in the running system
 Artifacts can be shown either as class boxes or by just listing the

name in the node
 Communication paths can be labeled based on the protocols that

they use
 Can be used as a configuration management tool to show an

"as is" system architecture and a proposed "to be" system
architecture for an organization

UML in the Software Process

UML-Software Requirements

 A use case diagram helps describe how people interact with the
system

 An activity diagram shows the context for use cases and also
the details of how a complicated use case works

 A class diagram drawn from the conceptual perspective is a
good way of building up a rigorous vocabulary of the domain
 It also shows the attributes and operations of interest in domain

classes and the relationships among the classes
 A state diagram shows the various states of a domain class and

events that change that state

UML and Software Design

 A class diagram drawn from the software perspective can show
design classes, their attributes and operations, and their
relationships with the domain classes

 A sequence diagram helps to combine use cases in order to see
what happens in the software

 A package diagram shows the large-scale organization of the
software

 A state diagram shows the various states of a design object and
events that change that state

 A deployment diagram shows the physical layout of the software

UML and Software Documentation

 Complements the written documentation and in some instances
can replace it

 Captures the outcome of the requirements analysis and design
activities in a graphical format

 Supplies a software maintainer with an overall understanding of
a system

 Provides a good logical roadmap of the system layout
 Describes the various states in which a system may exist
 Details complex algorithms in a more understandable form
 Shows how multiple objects collaborate in the system

	Introduction to UML
	UML for Software Development
	What is UML
	Origins of UML
	Origins of UML (Two)
	UML As a Sketch
	UML As a Blueprint
	Ways to use UML
	Types of UML Diagrams
	UML Diagrams: Part Two
	Classification of Diagram Types
	Use Case Diagram
	Use Case Diagram: Part Two
	Client-Server Use Case Diagram
	Peer-to-peer Use Case Diagram
	3. Activity Diagram
	Activity Diagram
	Example Activity Diagram
	Class Diagram
	Class Diagram
	Attribute
	Association
	Aggregation and Composition
	Operation
	Operation: Part Two
	Generalization
	Dependency
	Example Class Diagram
	When to Use Class Diagrams
	State Machine Diagram
	State Machine Diagram
	Transition
	Transition: Part Two
	Activity State
	State Diagram for a stack
	Implement a State Diagram in Code
	Other Diagrams of Interest
	Sequence Diagram
	Sequence Diagram (continued)
	Object Diagram
	Package Diagram
	Deployment Diagram
	UML in the Software Process
	UML-Software Requirements
	UML and Software Design
	UML and Software Documentation

