
UNIX Sockets

Developed for the Azera Group

By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.

Socket and Process Communication

2
The interface that the OS provides to its networking subsystem

application layer

transport layer (TCP/UDP)

network layer (IP)

link layer (e.g. ethernet)

application layer

transport layer (TCP/UDP)

network layer (IP)

link layer (e.g. ethernet)

OS network

stack

User Process User Process

Socket

OS network

stack

Socket

Internet

3

WinSock

 Derived from Berkeley Sockets (Unix)

 includes many enhancements for programming in
the windows environment

 Open interface for network programming
under Microsoft Windows

 API freely available

 Multiple vendors supply winsock

 Source and binary compatibility

 Collection of function calls that provide
network services

Data Delivery Architecture

 Network
 Deliver data packet to the destination host

 Based on the destination IP address

 Operating system
 Deliver data to the destination socket

 Based on the destination port number (e.g., 80)

 Application
 Read data from and write data to the socket

 Interpret the data (e.g., render a Web page)

4

Socket: End Point of Communication

 Sending message from one process to another
 Message must traverse the underlying network

 Process sends and receives through a “socket”
 In essence, the doorway leading in/out of the house

 The “socket” is a small piece of software that
lives between the application layer and the
transport layer

Socket: End Point of Communication

 Socket as an Application Programming
Interface
 Supports the creation of network applications

6

socket socket

User process User process

Operating
System

Operating
SystemNIC NIC

Ethernet

Application Processes Protocol

 Datagram Socket (UDP)

– Collection of messages

– Best effort

– Connectionless

 Stream Socket (TCP)

– Stream of bytes

– Reliable

– Connection-oriented

7

User Datagram Protocol (UDP):

8

Example UDP applications

Multimedia, voice over IP (Skype)

UDP
• Single socket to receive messages

• No guarantee of delivery

• Not necessarily in-order delivery

• Datagram – independent packets

• Must address each packet

(TCP): Stream Socket

9

Example TCP applications

Web, Email, Telnet

TCP

• Reliable – guarantee delivery

• Byte stream – in-order delivery

• Connection-oriented – single
socket per connection

• Setup connection followed by
data transfer

Socket Identification: Part One

 Communication Protocol

 TCP (Stream Socket): streaming, reliable

 UDP (Datagram Socket): packets, best effort

 Receiving host

 Destination address that uniquely identifies the host

 An IP address is a 32-bit quantity

 Receiving socket

 Host may be running many different processes

 Destination port that uniquely identifies the socket

 A port number is a 16-bit quantity

10

Socket Identification (Cont.)

11

TCP/UDP

IP

Ethernet Adapter

Process

A

Process

B

port X port Y

Host Address

Protocol

Port Number

Clients and Servers

 Client program
 Running on end

host

 Requests service

 E.g., Web browser

 Server program
 Running on end

host

 Provides service

 E.g., Web server

12

GET /index.html

“Site under construction”

Client-Server Communication

 Client “sometimes on”

 Initiates a request to the server

 E.g., Web browser on your laptop

 Doesn’t communicate directly with other
clients

13

Client-Server Communication

 Server is “always on”

 Handles services requests from many client hosts

 E.g., Web server for the www.cnn.com Web site

 Doesn’t initiate contact with the clients

 Needs fixed, known address

14

http://www.cnn.com/

Client and Server Processes

• Client process
– process that initiates communication

• Server Process
– process that waits to be contacted

15

Knowing What Port Number To Use

 Popular applications have well-known ports

 E.g., port 80 for Web and port 25 for e-mail

 nsiiops 261/tcp IIOP Name Service over TLS/SSL

 https 443/tcp http protocol over TLS/SS

 ftps-data 989/tcp ftp protocol, data, over TLS/SSL

 ftps 990/tcp ftp, control, over TLS/SSL

 telnets 992/tcp telnet protocol over TLS/SSL

 imaps 993/tcp imap4 protocol over TLS/SSL

 ircs 994/tcp irc protocol over TLS/SSL

 pop3s 995/tcp pop3 protocol over TLS/SSL

16

Knowing What Port Number To Use

 Well-known vs. ephemeral ports

 Server has a well-known port (e.g., port 80)

 Between 0 and 1023 (requires root to use)

 Client picks an unused ephemeral (i.e., temporary) port

 Between 1024 and 65535

 Uniquely identifying traffic between the hosts

 Two IP addresses and two port numbers

 Underlying transport protocol (e.g., TCP or UDP)

17

Using Ports to Identify Services

18

Web server

(port 80)

Client host

Server host 128.2.194.242

Echo server

(port 7)

Service request for

128.2.194.242:80

(i.e., the Web server)

Web server

(port 80)

Echo server

(port 7)

Service request for

128.2.194.242:7

(i.e., the echo server)

OS

OS

Client

Client

Client-Server Communication

19

Create a socket

Bind the socket
(what port am I on?)

Listen for client
(Wait for incoming connections)

Accept connection

Receive Request

Send response

Server

Client

Create a socket

Connect to server

Send the request

Receive response

Client-Server Communication
Datagram Sockets (UDP):
Connectionless

20

Create a socket

Bind the socket

Receive Request

Send response

Server
Client

Create a socket

Bind the socket

Send the request

Receive response

UNIX Socket API

 Socket interface
 Originally provided in Berkeley UNIX

 Later adopted by all popular operating systems

 Simplifies porting applications to different OSes

 In UNIX, everything is like a file
 All input is like reading a file

 All output is like writing a file

 File is represented by an integer file descriptor

 API implemented as system calls
 E.g., connect, send, recv, close, …

21

Connection-oriented Example-TCP

22

socket()

bind()

listen()

accept()

recv()

send()

Server

Client

socket()

connect()

send()

recv()

Connectionless Example- UDP

23

socket()

bind()

recvfrom()

sendto()

Server Client

socket()

bind()

sendto()

recvfrom()

Server Address/Port

 Server typically known by name and service
 Need to translate into IP address and port #

 E.g., “64.236.16.20” and “80”
 Get address info with given host name and service

 int getaddrinfo(char *node,
char *service

struct addrinfo *hints,

struct addrinfo **result)

 *node: host name (e.g., “www.cnn.com”) or IP address
 *service: port number or service listed in /etc/services

(e.g. ftp)
 hints: points to a struct addrinfo with known information

24

Server Address/Port (cont.)

 Data structure to host address information
struct addrinfo {

int ai_flags;

int ai_family;

//e.g. AF_INET for IPv4

int ai_socketype;

//e.g. SOCK_STREAM for TCP

int ai_protocol;

//e.g. IPPROTO_TCP size_t ai_addrlen;

char *ai_canonname;

struct sockaddr *ai_addr;

// point to sockaddr struct

struct addrinfo *ai_next;

}

25

Client: Creating a Socket

• Creating a socket
– int socket(int domain, int type, int protocol)

– Returns a file descriptor (or handle) for the socket

• Domain: protocol family
– PF_INET for IPv4
– PF_INET6 for IPv6

• Type: semantics of the communication
– SOCK_STREAM: reliable byte stream (TCP)
– SOCK_DGRAM: message-oriented service (UDP)

• Protocol: specific protocol
– UNSPEC: unspecified
– (PF_INET and SOCK_STREAM already implies TCP)

26

Client: Connecting Socket to Server

• Client contacts the server to establish connection
 Associate the socket with the server address/port

 Acquire a local port number (assigned by the OS)

 Request connection to server, who hopefully accepts

 connect is blocking

• Establishing the connection
– int connect(int sockfd,

struct sockaddr *server_address,

socketlen_t addrlen)

– Args: socket descriptor, server address, and address size

– Returns 0 on success, and -1 if an error occurs

27

Client: Sending Data

• Sending data
– int send(int sockfd, void *msg,

size_t len, int flags)

– Arguments: socket descriptor, pointer to buffer of data
to send, and length of the buffer

– Returns the number of bytes written, and -1 on error

– send is blocking: return only after data is sent

– Write short messages into a buffer and send once

28

Client: Receiving Data

 Receiving data
 int recv(int sockfd, void *buf,

size_t len, int flags)

 Arguments: socket descriptor, pointer to buffer to
place the data, size of the buffer

 Returns the number of characters read (where 0
implies “end of file”), and -1 on error

 Why do you need len? What happens if buf’s size <
len?

 recv is blocking: return only after data is received

29

Server: Server Preparing its Socket

 Server creates a socket and binds address/port
 Server creates a socket, just like the client does
 Server associates the socket with the port number

 Create a socket
 int socket(int domain,

int type, int protocol)

 Bind socket to the local address and port number
 int bind(int sockfd,

struct sockaddr *my_addr,

socklen_t addrlen)

30

Server: Allowing Clients to Wait

 Many client requests may arrive
 Server cannot handle them all at the same time

 Server could reject the requests, or let them wait

 Define how many connections can be pending

 int listen(int sockfd, int backlog)

 Arguments: socket descriptor and acceptable backlog

 Returns a 0 on success, and -1 on error

 Listen is non-blocking: returns immediately

 What if too many clients arrive?
 Some requests don’t get through

 The Internet makes no promises…

 And the client can always try again
31

Server: Accepting Client Connection

 Now all the server can do is wait…
 Waits for connection request to arrive

 Blocking until the request arrives

 And then accepting the new request

 Accept a new connection from a client
 int accept(int sockfd,

struct sockaddr *addr,

socketlen_t *addrlen)

 Arguments: sockfd, structure that will provide client
address and port, and length of the structure

 Returns descriptor of socket for this new connection
32

Client and Server: Cleaning House

 Once the connection is open
 Both sides and read and write

 Two unidirectional streams of data

 In practice, client writes first, and server reads

 … then server writes, and client reads, and so
on

 Closing down the connection
 Either side can close the connection

 … using the int close(int sockfd)

 What about the data still “in flight”
 Data in flight still reaches the other end

So, server can before client finishes

33

Server: One Request at a Time?

 Serializing requests is inefficient

 Server can process just one request at a time

 All other clients must wait until previous one is done

 What makes this inefficient?

 May need to time share the server machine

 Alternate between servicing different requests

 Do a little work on one request, then switch when you are waiting
for some other resource (e.g., reading file from disk)

 “Nonblocking I/O”

 Or, use a different process/thread for each request

 Allow OS to share the CPU(s) across processes

 Or, some hybrid of these two approaches
34

Handle Multiple Clients using fork()

 Steps to handle multiple clients
– Go to a loop and accept connections using accept()

– After a connection is established, call fork() to create
a new child process to handle it

– Go back to listen for another socket in the parent
process

– close() when you are done.

 Want to know more?

– Checkout out Beej's guide to network programming
35

Example Clients and Servers

 Apache Web server
 Open source server first released in 1995

 Name derives from “a patchy server” ;-)

 Mozilla Web browser
 Sendmail
 BIND Domain Name System

 Client resolver and DNS server

36

