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Socket and Process Communication
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WinSock

 Derived from Berkeley Sockets (Unix)

 includes many enhancements for programming in 
the windows environment

 Open interface for network programming 
under Microsoft Windows

 API freely available

 Multiple vendors supply winsock

 Source and binary compatibility

 Collection of function calls that provide 
network services



Data Delivery Architecture

 Network
 Deliver data packet to the destination host

 Based on the destination IP address

 Operating system
 Deliver data to the destination socket

 Based on the destination port number (e.g., 80)

 Application
 Read data from and write data to the socket

 Interpret the data (e.g., render a Web page)
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Socket: End Point of Communication

 Sending message from one process to another
 Message must traverse the underlying network

 Process sends and receives through a “socket”
 In essence, the doorway leading in/out of the house

 The “socket” is a small piece of software that 
lives between the application layer and the 
transport layer 



Socket: End Point of Communication

 Socket as an Application Programming 
Interface
 Supports the creation of network applications
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Application Processes Protocol

 Datagram Socket (UDP)

– Collection of messages

– Best effort

– Connectionless

 Stream Socket (TCP)

– Stream of bytes

– Reliable

– Connection-oriented
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User Datagram Protocol (UDP): 
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Example UDP applications

Multimedia, voice over IP (Skype)

UDP
• Single socket to receive messages

• No guarantee of delivery

• Not necessarily in-order delivery

• Datagram – independent packets

• Must address each packet



(TCP): Stream Socket
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Example TCP applications

Web, Email, Telnet

TCP

• Reliable – guarantee delivery

• Byte stream – in-order delivery

• Connection-oriented – single 
socket per connection

• Setup connection followed by 
data transfer



Socket Identification: Part One 

 Communication Protocol

 TCP (Stream Socket): streaming, reliable

 UDP (Datagram Socket): packets, best effort

 Receiving host

 Destination address that uniquely identifies the host

 An IP address is a 32-bit quantity

 Receiving socket

 Host may be running many different processes

 Destination port that uniquely identifies the socket

 A port number is a 16-bit quantity
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Socket Identification (Cont.)
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Clients and Servers

 Client program
 Running on end 

host

 Requests service

 E.g., Web browser

 Server program
 Running on end 

host

 Provides service

 E.g., Web server
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GET /index.html

“Site under construction”



Client-Server Communication

 Client “sometimes on”

 Initiates a request to the server

 E.g., Web browser on your laptop 

 Doesn’t communicate directly with other 
clients
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Client-Server Communication

 Server is “always on”

 Handles services requests from many client hosts

 E.g., Web server for the www.cnn.com Web site

 Doesn’t initiate contact with the clients

 Needs fixed, known address
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http://www.cnn.com/


Client and Server Processes

• Client process
– process that initiates communication

• Server Process
– process that waits to be contacted
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Knowing What Port Number To Use

 Popular applications have well-known ports

 E.g., port 80 for Web and port 25 for e-mail

 nsiiops 261/tcp IIOP Name Service over TLS/SSL

 https 443/tcp http protocol over TLS/SS

 ftps-data 989/tcp ftp protocol, data, over TLS/SSL

 ftps 990/tcp ftp, control, over TLS/SSL 

 telnets 992/tcp telnet protocol over TLS/SSL 

 imaps 993/tcp imap4 protocol over TLS/SSL 

 ircs 994/tcp irc protocol over TLS/SSL 

 pop3s 995/tcp pop3 protocol over TLS/SSL
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Knowing What Port Number To Use

 Well-known vs. ephemeral ports

 Server has a well-known port (e.g., port 80)

 Between 0 and 1023 (requires root to use)

 Client picks an unused ephemeral (i.e., temporary) port

 Between 1024 and 65535

 Uniquely identifying traffic between the hosts

 Two IP addresses and two port numbers

 Underlying transport protocol (e.g., TCP or UDP)
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Using Ports to Identify Services
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Client-Server Communication 

19

Create a socket

Bind the socket 
(what port am I on?)

Listen for client
(Wait for incoming connections)

Accept connection

Receive Request

Send response

Server

Client

Create a socket

Connect to server

Send the request

Receive response



Client-Server Communication 
Datagram Sockets (UDP): 
Connectionless
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UNIX Socket API

 Socket interface
 Originally provided in Berkeley UNIX

 Later adopted by all popular operating systems

 Simplifies porting applications to different OSes

 In UNIX, everything is like a file
 All input is like reading a file

 All output is like writing a file

 File is represented by an integer file descriptor

 API implemented as system calls
 E.g., connect, send, recv, close, …
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Connection-oriented Example-TCP
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Connectionless Example- UDP
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Server Address/Port

 Server typically known by name and service
 Need to translate into IP address and port #

 E.g., “64.236.16.20” and “80”
 Get address info with given host name and service

 int getaddrinfo( char *node, 
char *service

struct addrinfo *hints,

struct addrinfo **result)

 *node: host name (e.g., “www.cnn.com”) or IP address
 *service: port number or service listed in /etc/services 

(e.g. ftp)
 hints: points to a  struct addrinfo with known information
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Server Address/Port (cont.)

 Data structure to host address information
struct addrinfo {

int ai_flags;

int ai_family;

//e.g. AF_INET for IPv4

int ai_socketype;

//e.g. SOCK_STREAM for TCP

int ai_protocol;

//e.g. IPPROTO_TCP size_t ai_addrlen;

char *ai_canonname;

struct sockaddr *ai_addr;

// point to sockaddr struct

struct addrinfo *ai_next;

}
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Client: Creating a Socket

• Creating a socket
– int socket(int domain, int type, int protocol)

– Returns a file descriptor (or handle) for the socket

• Domain: protocol family
– PF_INET for IPv4
– PF_INET6 for IPv6

• Type: semantics of the communication
– SOCK_STREAM: reliable byte stream (TCP)
– SOCK_DGRAM: message-oriented service (UDP)

• Protocol: specific protocol
– UNSPEC: unspecified
– (PF_INET and SOCK_STREAM already implies TCP)
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Client: Connecting Socket to Server

• Client contacts the server to establish connection
 Associate the socket with the server address/port

 Acquire a local port number (assigned by the OS)

 Request connection to server, who hopefully accepts

 connect is blocking

• Establishing the connection
– int connect(int sockfd, 

struct sockaddr *server_address,

socketlen_t addrlen )

– Args: socket descriptor, server address, and address size

– Returns 0 on success, and -1 if an error occurs

27



Client: Sending Data

• Sending data
– int send(int sockfd, void *msg, 

size_t len, int flags)

– Arguments: socket descriptor, pointer to buffer of data 
to send, and length of the buffer

– Returns the number of bytes written, and -1 on error

– send is blocking: return only after data is sent

– Write short messages into a buffer and send once
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Client: Receiving Data

 Receiving data
 int recv(int sockfd, void *buf, 

size_t len, int flags)

 Arguments: socket descriptor, pointer to buffer to 
place the data, size of the buffer

 Returns the number of characters read (where 0 
implies “end of file”), and -1 on error

 Why do you need len? What happens if buf’s size < 
len?

 recv is blocking: return only after data is received
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Server: Server Preparing its Socket

 Server creates a socket and binds address/port
 Server creates a socket, just like the client does
 Server associates the socket with the port number

 Create a socket
 int socket(int domain,

int type, int protocol )

 Bind socket to the local address and port number
 int bind(int sockfd, 

struct sockaddr *my_addr, 

socklen_t addrlen )
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Server: Allowing Clients to Wait

 Many client requests may arrive
 Server cannot handle them all at the same time

 Server could reject the requests, or let them wait

 Define how many connections can be pending

 int listen(int sockfd, int backlog)

 Arguments: socket descriptor and acceptable backlog

 Returns a 0 on success, and -1 on error

 Listen is non-blocking: returns immediately

 What if too many clients arrive?
 Some requests don’t get through

 The Internet makes no promises…

 And the client can always try again
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Server: Accepting Client Connection

 Now all the server can do is wait…
 Waits for connection request to arrive

 Blocking until the request arrives

 And then accepting the new request

 Accept a new connection from a client
 int accept(int sockfd, 

struct sockaddr *addr,  

socketlen_t *addrlen)

 Arguments: sockfd, structure that will provide client 
address and port, and length of the structure

 Returns descriptor of socket for this new connection
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Client and Server: Cleaning House

 Once the connection is open
 Both sides and read and write

 Two unidirectional streams of data

 In practice, client writes first, and server reads

 … then server writes, and client reads, and so 
on

 Closing down the connection
 Either side can close the connection

 … using the int close(int sockfd)

 What about the data still “in flight”
 Data in flight still reaches the other end

So, server can before client finishes 
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Server: One Request at a Time?

 Serializing requests is inefficient

 Server can process just one request at a time

 All other clients must wait until previous one is done

 What makes this inefficient?

 May need to time share the server machine

 Alternate between servicing different requests

 Do a little work on one request, then switch when you are waiting 
for some other resource (e.g., reading file from disk)

 “Nonblocking I/O”

 Or, use a different process/thread for each request

 Allow OS to share the CPU(s) across processes

 Or, some hybrid of these two approaches
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Handle Multiple Clients using fork()

 Steps to handle multiple clients
– Go to a loop and accept connections using accept()

– After a connection is established, call fork() to create 
a new child process to handle it

– Go back to listen for another socket in the parent 
process

– close() when you are done.

 Want to know more?

– Checkout out Beej's guide to network programming
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Example Clients and Servers

 Apache Web server
 Open source server first released in 1995

 Name derives from “a patchy server” ;-)

 Mozilla Web browser
 Sendmail
 BIND Domain Name System

 Client resolver and DNS server
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