!'_ UNIX Sockets

Developed for the Azera Group
By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.

Socket and Process Communication

application layer application layer
User Process User Process

Socket Socket
transport layer (TCP/UDP) transport layer (TCP/UDP)
network layer (IP) network layer (IP)
link layer (e.g. ethernet) < Internet > link layer (e.g. ethernet)
OS network OS network
stack stack

The interface that the OS provides to its networking subsystem,

i WinSock

= Derived from Berkeley Sockets (Unix)

= includes many enhancements for programming in
the windows environment

= Open interface for network programming
under Microsoft Windows
= API freely available
= Multiple vendors supply winsock
= Source and binary compatibility

= Collection of function calls that provide
network services

i Data Delivery Architecture

s Network

= Deliver data packet to the destination host
= Based on the destination IP address

= Operating system
= Deliver data to the destination socket
= Based on the destination port number (e.g., 80)

= Application
= Read data from and write data to the socket
= Interpret the data (e.g., render a Web page)

i Socket: End Point of Communication

= Sending message from one process to another
= Message must traverse the underlying network

= Process sends and receives through a “socket”
=« In essence, the doorway leading in/out of the house
= The “socket” is a small piece of software that

lives between the application layer and the
transport layer

i Socket: End Point of Communication

= Socket as an Application Programming
Interface

= Supports the creation of network applications

User process User process

socket @ socket
: Operating

@) t

Syii:nmg NIC <+ y— NIC System

i Application Processes Protocol

= Datagram Socket (UDP)
~ Collection of messages
~ Best effort
- Connectionless

= Stream Socket (TCP)

~ Stream of bytes
_ Reliable
_ Connection-oriented

User Datagram Protocol (UDP):

UDP

Single socket to receive messages
No guarantee of delivery
Not necessarily in-order delivery

Datagram — independent packets

Must address each packet

Example UDP applications
Multimedia, voice over IP (Skype)

i (TCP): Stream Socket

TCP
Reliable — guarantee delivery

Byte stream — in-order delivery

Connection-oriented — single
socket per connection

Setup connection followed by
data transfer

Example TCP applications
Web, Email, Telnet

Socket Identification: Part One

= Communication Protocol
= TCP (Stream Socket): streaming, reliable
= UDP (Datagram Socket): packets, best effort

= Receiving host
= Destination address that uniquely identifies the host
= An IP address is a 32-bit quantity

= Receiving socket
= Host may be running many different processes

= Destination port that uniquely identifies the socket
= A port number is a 16-bit quantity

i Socket Identification (Cont.)

Process
A

Process
B

port X \

/‘portY -+

\ /

TCP/UDP

IP

Ethernet Adapter

— — = Port Number

- — - - Protocol

- - —- Host Address

11

‘L Clients and Servers

= Client program = Server program
= Running on end = Running on end
nost host
= Requests service = Provides service
= E. g Web browser = E.g., Web server

—_—

% \’\ GET/mdexhtT)E
/w |

“Site under construction”

12

i Client-Server Communication

= Client “sometimes on”
= Initiates a request to the server
= E.g., Web browser on your laptop

= Doesn’t communicate directly with other
clients

)
W <
A —

T

13

i Client-Server Communication

= Server is “always on”
= Handles services requests from many client hosts
=« E.g., Web server for the www.cnn.com Web site
=« Doesn't initiate contact with the clients
= Needs fixed, known address

14

http://www.cnn.com/

i Client and Server Processes

. Client process
- process that initiates communication

. Server Process
- process that waits to be contacted

15

Knowing What Port Number To Use

= Popular applications have well-known ports

E.g., port 80 for Web and port 25 for e-mail
nsiiops 261/tcp IIOP Name Service over TLS/SSL

https 443/tcp http protocol over TLS/SS
ftps-data 989/tcp ftp protocol, data, over TLS/SSL
ftps 990/tcp ftp, control, over TLS/SSL
telnets 992/tcp telnet protocol over TLS/SSL
imaps 993/tcp imap4 protocol over TLS/SSL
ircs 994 /tcp irc protocol over TLS/SSL

pop3s 995/tcp pop3 protocol over TLS/SSL

16

Knowing What Port Number To Use

= Well-known vs. ephemeral ports

= Server has a well-known port (e.g., port 80)
= Between 0 and 1023 (requires root to use)

= Client picks an unused ephemeral (i.e., temporary) port
= Between 1024 and 65535
= Uniquely identifying traffic between the hosts
= Two IP addresses and two port numbers
= Underlying transport protocol (e.g., TCP or UDP)

17

Using Ports to Identify Services

Server host 128.2.194.242

. Service request for
Clienthost 128.2.194.242:80
’ i (l.e., the Web server)

Echo server
(port 7)

Service request for

(i.e., the echo server) (port 80)

i Client-Server Communication

Server

Create a socket

- estab\ish connection F
data (request)

19

Datagram Sockets (UDP):

Cinnectionless

Server

i UNIX Socket API

= Socket interface
= Originally provided in Berkeley UNIX
= Later adopted by all popular operating systems
« Simplifies porting applications to different OSes

= In UNIX, everything is like a file
= All input is like reading a file
= All output is like writing a file
= File is represented by an integer file descriptor

= API implemented as system calls
= E.g., connect, send, recy, close, ...

i Connection-oriented Example-TCP

Server

Clent
—--
. L:

=
*
=

i Connectionless Example- UDP

Server Client

i Server Address/Port

= Server typically known by name and service

= Need to translate into IP address and port #
= E.g., “64.236.16.20” and “80”

= Get address info with given host name and service

= int getaddrinfo(char *node,
char *service

struct addrinfo *hints,
struct addrinfo **result)
= *node: host name (e.g., “www.cnn.com”) or IP address
= *service: port number or service listed in /etc/services

(e.9. ftp) o . .
= hints: points to a struct addrinfo with known information

24

Server Address/Port (cont.)

s Data structure to host address information

struct addrinfo {

int al flags;

int al family;
//e.g. AF INET for IPv4

int al socketype;
//e.g. SOCK STREAM for TCP

int al protocol;
//e.g. IPPROTO TCP size t ai addrlen;

char *al canonname;

struct sockaddr *al addr;

// point to sockaddr struct
struct addrinfo *al next;

25

i Client: Creating a Socket

Creating a socket
- int socket(int domain, int type, int protocol)

- Returns a file descriptor (or handle) for the socket
Domain: protocol family

_ PF_INET for IPv4
_ PF_INETS6 for IPv6

Type: semantics of the communication
- SOCK_STREAM: reliable byte stream (TCP)
- SOCK_DGRAM: message-oriented service (UDP)

Protocol: specific protocol
- UNSPEC: unspecified
- (PF_INET and SOCK_STREAM already implies TCP)

26

Client: Connecting Socket to Server

Client contacts the server to establish connection

o Associate the socket with the server address/port

a Acquire a local port number (assigned by the OS)

o Request connection to server, who hopefully accepts
o connect is blocking

Establishing the connection

- int connect(int sockfd,

struct sockaddr *server address,
socketlen t addrlen)

- Args: socket descriptor, server address, and address size
- Returns 0 on success, and -1 if an error occurs

277

i Client: Sending Data

. Sending data

- int send(int sockfd, wvoid *msgqg,
size t len, int flags)

- Arguments: socket descriptor, pointer to buffer of data
to send, and length of the buffer

- Returns the number of bytes written, and -1 on error
- send is blocking: return only after data is sent

- Write short messages into a buffer and send once

28

i Client: Receiving Data

= Receiving data

= int recv(int sockfd, wvoid *buf,
size t len, int flags)

= Arguments: socket descriptor, pointer to buffer to
place the data, size of the buffer

= Returns the number of characters read (where 0
implies “end of file”), and -1 on error

= Why do you need len? What happens if buf’s size <
len?

= recv is blocking: return only after data is received

29

i Server: Server Preparing its Socket

= Server creates a socket and binds address/port
= Server creates a socket, just like the client does
= Server associates the socket with the port number

= Create a socket
= int socket(int domain,
int type, int protocol)
= Bind socket to the local address and port number
= int bind(int sockfd,
struct sockaddr *my addr,
socklen t addrlen)

30

Server: Allowing Clients to Wait

= Many client requests may arrive
= Server cannot handle them all at the same time
= Server could reject the requests, or let them wait

= Define how many connections can be pending
= int listen(int sockfd, int backloqg)
= Arguments: socket descriptor and acceptable backlog
= Returns a 0 on success, and -1 on error
= Listen is non-blocking: returns immediately
= What if too many clients arrive?
= Some requests don’ t get through

= The Internet makes no promises...
= And the client can always try again

31

i Server: Accepting Client Connection

= Now all the server can do is wait...
=« Waits for connection request to arrive
= Blocking until the request arrives
= And then accepting the new request

= Accept a new connection from a client
» int accept(int sockfd,

struct sockaddr *addr,
socketlen t *addrlen)

= Arguments: sockfd, structure that will provide client
address and port, and length of the structure

= Returns descriptor of socket for this new connection

32

i Client and Server: Cleaning House

= Once the connection is open
= Both sides and read and write
= WO unidirectional streams of data
= In practice, client writes first, and server reads

= ... then server writes, and client reads, and so
on

= Closing down the connection

= Either side can close the connection
= ... Using the int close (int sock£fd)

= What about the data still “in flight”
= Data in flight still reaches the other end -

Server: One Request at a Time?

= Serializing requests is inefficient
= Server can process just one request at a time
= All other clients must wait until previous one is done
= What makes this inefficient?

= May need to time share the server machine

= Alternate between servicing different requests

= Do a little work on one request, then switch when you are waiting
for some other resource (e.g., reading file from disk)

= “Nonblocking I/0”

= Or, use a different process/thread for each request
= Allow OS to share the CPU(s) across processes

= Or, some hybrid of these two approaches

34

i Handle Multiple Clients using fork()

= Steps to handle multiple clients

- Go to a loop and accept connections using accept()

~ After a connection is established, call fork() to create
a new child process to handle it

- Go back to listen for another socket in the parent
process

- close() when you are done.
= Want to know more?
- Checkout out Beej's guide to network programming

35

i Example Clients and Servers

= Apache Web server
= Open source server first released in 1995

= Name derives from “a patchy server” ;-)
= Mozilla Web browser
= Sendmail

= BIND Domain Name System
= Client resolver and DNS server

36

